Final \#1

Mark the correct answer in each part of the following questions.

1. The number of daughters of a random Tanzanian elephantess is distributed as $X-1$, where $X \sim G(1 / 2)$.
(a) The probability for a random Tanzanian elephantess to have 2 granddaughters (which here means only daughters of daughters, and not daughters of sons) is:
(i) $1 / 32$.
(ii) $2 / 27$.
(iii) $3 / 16$.
(iv) $2 / 9$.
(v) None of the above.
(b) If a random elephantess has 3 granddaughters (again, daughters of daughters), then the probability she has 2 daughters is
(i) $37 / 156$.
(ii) $27 / 104$.
(iii) $119 / 417$.
(iv) $243 / 832$.
(v) None of the above.
(c) Two random elephantesses have jointly 4 daughters. The probability that each has two daughters is
(i) $1 / 16$.
(ii) $1 / 9$.
(iii) $1 / 5$.
(iv) $1 / 4$.
(v) None of the above.
(d) In one of the parks in Tanzania there are altogether 1000 elephantesses. The probability that they will have altogether 1200 daughters is:
(i) $\frac{\left(\begin{array}{l}21999 \\ 2^{2200}\end{array}\right.}{2}$
(ii) $\frac{\binom{2199}{2^{2199}}}{}$.
(iii) $\frac{\binom{22200}{2^{2200}}}{}$.
(iv) $\frac{\binom{22000}{2^{2199}}}{}$.
(v) None of the above.
(e) Markov's Inequality implies that the probability that the 1000 elephantesses above will have at least 2500 daughters altogether is at most
(i) 0.1 .
(ii) 0.2 .
(iii) 0.3 .
(iv) 0.4 .
(v) None of the above.

Remark: We mean here the best bound that be reached. For example, if Markov's Inequality implies that the above probability is at most 0.1 , hence it is also at most 0.2 , and (0.3 and 0.4), but only (i) should be marked as the correct answer.
2. An experiment consists of $n \geq 1$ stages. In each stage i we select uniformly randomly i integers between 1 and i. (Thus, altogether $\frac{n(n+1)}{2}$ numbers are chosen.) For $1 \leq i \leq n$, let Y_{i} be the number of times the number i was selected at the i-th stage, S_{i} the sum of all i numbers selected at the i-th stage, and $S=\sum_{i=1}^{n} S_{i}$. (For example, if $n=5$ and the selected numbers have been $1,2,1,2,3,1,2,1,4,4,5,5,5,1,5$, then $Y_{1}=Y_{2}=Y_{3}=1, Y_{4}=2, Y_{5}=4, S_{1}=1, S_{2}=3, S_{3}=6, S_{4}=11, S_{5}=$ 21, $S=42$.) (Hint: $\sum_{i=1}^{n} i^{2}=\frac{n(n+1)(2 n+1)}{6}, \quad \sum_{i=1}^{n} i^{3}=\frac{n^{2}(n+1)^{2}}{4}$.)
(a) The ratio $P\left(Y_{1000}=3\right)^{2} / P\left(Y_{1000}=6\right)$ is approximately
(i) 5 .
(ii) 10 .
(iii) 20 .
(iv) 40 .
(v) None of the above.
(b) Suppose it is known that at the 100-th stage all numbers between 1 and 100 have been selected. The probability that at least one of them was equal to the number indicating its location within the selected numbers (namely, either the first number was 1, or the second was $2, \ldots$, or the last one was 100) is
(i) approximately 0.37 .
(ii) approximately 0.63 .
(iii) approximately 0.76 .
(iv) very close to 1 .
(v) None of the above.
(c) If $n=100$, then the probability for all three numbers $98,99,100$ not to be selected even once (out of all 5050 selected numbers) is approximately
(i) $1 / e^{2}$.
(ii) $1 / e^{3}$.
(iii) $1 / e^{4}$.
(iv) $1 / e^{6}$.
(v) None of the above.
(d) $\operatorname{Cov}\left(S_{15}, Y_{15}\right)=$
(i) 7 .
(ii) 7.5 .
(iii) 8 .
(iv) 8.5 .
(v) None of the above.
(e) A direct application of Chebyshev's Inequality for $n=24$ yields the following (where the bounds on the right-hand side are approximate):
(i) $P(2350 \leq S \leq 2850) \geq 0.78$.
(ii) $P(2350 \leq S \leq 2850) \geq 0.83$.
(iii) $P(2350 \leq S \leq 2850) \geq 0.88$.
(iv) $P(2350 \leq S \leq 2850) \geq 0.93$.
(v) None of the above.

Remark: We mean here the best bound, which can that be reached. For example, if Chebyshev's Inequality implies that the above probability is at least 0.93 , hence it is also at least 0.88 , and (0.83 and 0.78), but only (iv) should be marked as the correct answer.
3. Reuven and Shimon play an infinite-stage game, as follows. At stage 0 they toss a coin. At each stage $n \geq 1$ they toss both a coin and a die. If the coin shows a head at both stages $n-1$ and n, Reuven gets 1 shekel from Shimon. If the die shows a 6 at the n-th stage, Shimon gets one shekel from Reuven. Let X_{n} be the net profit of Reuven at the n-th stage. (For example, if the coin showed T, T, H, H, H, H, T and the die $6,3,1,6,5,6$, then $X_{1}=X_{6}=-1, X_{2}=X_{4}=0, X_{3}=X_{5}=1$.)
(a) For $n \geq 1$ we have $P\left(X_{n}=0\right)=$
(i) $\frac{1}{2}$.
(ii) $\frac{2}{3}$.
(iii) $\frac{3}{4}$.
(iv) $\frac{5}{6}$.
(v) None of the above.
(b) For $n \geq 1 P\left(X_{n+1}=0 \mid X_{n}=0\right)=$
(i) $17 / 30$.
(ii) $17 / 24$.
(iii) $17 / 20$.
(iv) $17 / 18$.
(v) None of the above.
(c) The expectation and variance of X_{n} are:
(i) $E\left(X_{n}\right)=-1 / 12, V\left(X_{n}\right)=29 / 144$.
(ii) $E\left(X_{n}\right)=0, V\left(X_{n}\right)=7 / 48$.
(iii) $E\left(X_{n}\right)=1 / 12, V\left(X_{n}\right)=47 / 144$.
(iv) $E\left(X_{n}\right)=1 / 6, V\left(X_{n}\right)=5 / 36$.
(v) None of the above.
(d) Consider the sequence of averages:

$$
\bar{X}_{n}=\frac{X_{1}+X_{2}+\ldots+X_{n}}{n}
$$

(i) The random variables $\bar{X}_{1}, \bar{X}_{2}, \ldots$ are dependent, and with probability 1 their sequence of values is dense in the interval $[-1,1]$. (That is, for every subinterval $[a, b] \subseteq[-1,1]$, one of those values lies in the subinterval.)
(ii) The random variables $\bar{X}_{1}, \bar{X}_{2}, \ldots$ are independent and have the same distribution as the variables X_{n}.
(iii) The random variables $\bar{X}_{1}, \bar{X}_{2}, \ldots$ are dependent, and therefore the sequence does not satisfy the weak law of large numbers.
(iv) $P\left(\left|\bar{X}_{n}-1 / 12\right|>\varepsilon\right) \underset{n \rightarrow \infty}{\longrightarrow} 0$ for every $\varepsilon>0$.
(v) None of the above.
(e) Now assume that only even rounds qualify for wins, namely odd rounds are still held but money is not moved on those rounds. Let X be the total profit (positive or negative) of Reuven in the first 8352 rounds. Then $P(290 \leq X \leq 377) \approx$
(i) 0.18 .
(ii) 0.36 .
(iii) 0.72 .
(iv) 0.82 .
(v) None of the above.
4. A wooden rod of unit length is broken into two pieces at a uniformly distributed point along it. The two pieces are put orthogonally to each
other to generate the two perpendiculars of a right triangle. A plastic rod of appropriate length is constructed to serve as the hypotenuse of the triangle, and a square is constructed on this hypotenuse. Let X be the length of the right part of the first rod, H - the length of the hypotenuse, S_{\triangle} the area of the triangle, and S_{\square} the area of the square. (For example, if the right part of the wooden rod is of length $3 / 7$, then $X=3 / 7, H=5 / 7, S_{\triangle}=6 / 49$, and $S_{\square}=25 / 49$.)
(a) The density function $f_{H}(h)$ is given by:
(i)

$$
f_{H}(h)=\left\{\begin{array}{lc}
\frac{2 h}{\sqrt{2 h^{2}-1}}, & \frac{\sqrt{2}}{2} \leq h \leq 1, \\
0, & \text { otherwise }
\end{array}\right.
$$

(ii)

$$
f_{H}(h)= \begin{cases}\sqrt{h^{2}+(1-h)^{2}}, & 0 \leq h \leq 1, \\ 0, & \text { otherwise } .\end{cases}
$$

(iii)

$$
f_{H}(h)= \begin{cases}\frac{1}{\sqrt{h^{2}+(1-h)^{2}}}, & 0 \leq h \leq 1 \\ 0, & \text { otherwise }\end{cases}
$$

(iv)

$$
f_{H}(h)= \begin{cases}\frac{2 h}{\sqrt{h^{2}+(1-h)^{2}}}, & \frac{\sqrt{2}}{2} \leq h \leq 1, \\ 0, & \text { otherwise }\end{cases}
$$

(v) None of the above.
(b) The distribution function $F_{S_{\Delta}}$ of S_{\triangle} is given by:
(i)

$$
F_{S_{\triangle}}(t)= \begin{cases}0, & t<0 \\ 8 t, & 0 \leq t \leq 1 / 8 \\ 1, & t>1 / 8\end{cases}
$$

(ii)

$$
F_{S_{\Delta}}(t)= \begin{cases}0, & t<0 \\ 2 \sqrt{2 t}, & 0 \leq t \leq 1 / 8 \\ 1, & t>1 / 8\end{cases}
$$

(iii)

$$
F_{S_{\triangle}}(t)= \begin{cases}0, & t<0, \\ 1-\sqrt{1-8 t}, & 0 \leq t \leq 1 / 8 \\ 1, & t>1 / 8 .\end{cases}
$$

(iv)

$$
F_{S_{\triangle}}(t)= \begin{cases}0, & t<0, \\ 9 t-8 t^{2}, & 0 \leq t \leq 1 / 8 \\ 1, & t>1 / 8\end{cases}
$$

(v) None of the above.
(c) $E\left(S_{\triangle}\right)=$
(i) $1 / 48$.
(ii) $1 / 30$.
(iii) $1 / 24$.
(iv) $1 / 12$.
(v) None of the above.
(d) $\rho\left(S_{\triangle}, S_{\square}\right)=$
(i) -1 .
(ii) $-1 / 2$.
(iii) 0 .
(iv) 1 .
(v) None of the above.
(e) Let ψ be the moment generating function of S_{\square}. Then $\psi(0.003) \approx$
(i) 0.996 .
(ii) 0.998 .
(iii) 1.002 .
(iv) 1.004 .
(v) None of the above.

Solutions

1. (a) Let A be the event whereby a random Tanzanian elephantess has 2 granddaughters, and $H_{k}, \quad k \geq 0$, the event whereby she has k
daughters. Then:

$$
\begin{align*}
P(A) & =\sum_{k=0}^{\infty} P\left(A \mid H_{k}\right) \cdot P\left(H_{k}\right) \\
& =\sum_{k=0}^{\infty} P\left(A \mid H_{k}\right) \cdot P(X=k+1) \tag{1}\\
& =\sum_{k=0}^{\infty} P\left(A \mid H_{k}\right) \cdot\left(\frac{1}{2}\right)^{k+1} .
\end{align*}
$$

Let A_{1} be the event whereby the elephantess has two granddaughters, both daughters of the same mother, and A_{2} be the event whereby it still has two granddaughters, but they have different mothers. Clearly, $A=A_{1} \cup A_{2}$, and the union is disjoint. In these terms:

$$
P\left(A \mid H_{k}\right)=P\left(A_{1} \mid H_{k}\right)+P\left(A_{2} \mid H_{k}\right), \quad k \geq 0
$$

Obviously, for $k \geq 0$ we have

$$
\begin{equation*}
P\left(A_{1} \mid H_{k}\right)=\binom{k}{1}\left(\frac{1}{2}\right)^{3} \cdot\left(\frac{1}{2}\right)^{k-1}=\binom{k}{1}\left(\frac{1}{2}\right)^{k+2} \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
P\left(A_{2} \mid H_{k}\right)=\binom{k}{2}\left(\frac{1}{2}\right)^{2} \cdot\left(\frac{1}{2}\right)^{2} \cdot\left(\frac{1}{2}\right)^{k-2}=\binom{k}{2}\left(\frac{1}{2}\right)^{k+2} \tag{3}
\end{equation*}
$$

Substituting (2) and (3) into (1) we obtain:

$$
\begin{aligned}
P(A) & =\sum_{k=0}^{\infty}\left(\binom{k}{1}+\binom{k}{2}\right) \cdot\left(\frac{1}{2}\right)^{2 k+3} \\
& =\frac{1}{8} \cdot\left(\sum_{k=0}^{\infty}\binom{k}{1} \cdot\left(\frac{1}{4}\right)^{k}+\sum_{k=0}^{\infty}\binom{k}{2} \cdot\left(\frac{1}{4}\right)^{k}\right) \\
& =\frac{1}{8} \cdot\left(\frac{1 / 4}{(1-1 / 4)^{2}}+\frac{(1 / 4)^{2}}{(1-1 / 4)^{3}}\right)=2 / 27 .
\end{aligned}
$$

Thus, (ii) is true.
(b) Let C be the event whereby a random Tanzanian elephantess has 3 granddaughters, and $H_{k}, \quad k \geq 0$, the event whereby she has k daughters. Then:

$$
\begin{align*}
P\left(H_{2} \mid C\right) & =\frac{P\left(C \mid H_{2}\right) \cdot P\left(H_{2}\right)}{\sum_{k=0}^{\infty} P\left(C \mid H_{k}\right) \cdot P\left(H_{k}\right)} \\
& =\frac{P\left(C \mid H_{2}\right) \cdot P(X=3)}{\sum_{k=0}^{\infty} P\left(C \mid H_{k}\right) \cdot P(X=k+1)} \tag{4}\\
& =\frac{P\left(C \mid H_{2}\right) \cdot \frac{1}{8}}{\sum_{k=0}^{\infty} P\left(C \mid H_{k}\right) \cdot\left(\frac{1}{2}\right)^{k+1}} .
\end{align*}
$$

Let C_{1}, C_{2}, C_{3} be the subevents of C whereby the three granddaughters have the same mother, two distinct mothers, three mothers, respectively. Obviously, $C=C_{1} \cup C_{2} \cup C_{3}$, and the union is disjoint. In these terms:

$$
P\left(C \mid H_{k}\right)=P\left(C_{1} \mid H_{k}\right)+P\left(C_{2} \mid H_{k}\right)+P\left(C_{3} \mid H_{k}\right), \quad k \geq 0
$$

Obviously, for $k \geq 0$ we have:

$$
\begin{gather*}
P\left(C_{1} \mid H_{k}\right)=\binom{k}{1}\left(\frac{1}{2}\right)^{4} \cdot\left(\frac{1}{2}\right)^{k-1}=\binom{k}{1}\left(\frac{1}{2}\right)^{k+3}, \tag{5}\\
P\left(C_{2} \mid H_{k}\right)=2 \cdot\binom{k}{2} \cdot\left(\frac{1}{2}\right)^{3} \cdot\left(\frac{1}{2}\right)^{2} \cdot\left(\frac{1}{2}\right)^{k-2}=2 \cdot\binom{k}{2}\left(\frac{1}{2}\right)^{k+3}, \tag{6}
\end{gather*}
$$

and
$P\left(C_{3} \mid H_{k}\right)=\binom{k}{3} \cdot\left(\frac{1}{2}\right)^{2} \cdot\left(\frac{1}{2}\right)^{2} \cdot\left(\frac{1}{2}\right)^{2} \cdot\left(\frac{1}{2}\right)^{k-3}=\binom{k}{3}\left(\frac{1}{2}\right)^{k+3}$,

Substituting (5), (6) and (7) into (4), we obtain:

$$
\begin{aligned}
P\left(H_{2} \mid C\right) & =\frac{\left(\binom{2}{1}+2 \cdot\binom{2}{2}\right) \cdot \frac{1}{2^{8}}}{\sum_{k=0}^{\infty}\left(\binom{k}{1}+2 \cdot\binom{k}{2}+\binom{k}{3}\right) \cdot\left(\frac{1}{2}\right)^{2 k+4}} \\
& =\frac{1 / 4}{\sum_{k=0}^{\infty}\binom{k}{1} \cdot\left(\frac{1}{4}\right)^{k}+2 \cdot \sum_{k=0}^{\infty}\binom{k}{2} \cdot\left(\frac{1}{4}\right)^{k}+\sum_{k=0}^{\infty}\binom{k}{3} \cdot\left(\frac{1}{4}\right)^{k}} \\
& =\frac{1 / 4}{\frac{1 / 4}{(1-1 / 4)^{2}}+2 \cdot \frac{(1 / 4)^{2}}{(1-1 / 4)^{3}}+\frac{(1 / 4)^{3}}{(1-1 / 4)^{4}}}=\frac{81}{256} .
\end{aligned}
$$

Thus, (v) is true.
(c) For $i=1,2$ denote by Y_{i} the number of daughters of i-th elephantesses. Hence:

$$
\begin{aligned}
P\left(Y_{1}=2, Y_{2}=2 \mid Y_{1}+Y_{2}=4\right) & =\frac{P\left(Y_{1}=2, Y_{2}=2\right)}{P\left(Y_{1}+Y_{2}=4\right)} \\
& =\frac{P\left(Y_{1}=2\right) \cdot P\left(Y_{2}=2\right)}{\sum_{i=0}^{4} P\left(Y_{1}=i\right) \cdot P\left(Y_{2}=4-i\right)} \\
& =\frac{P\left(Y_{1}=2\right) \cdot P\left(Y_{2}=2\right)}{\sum_{i=0}^{4} P\left(Y_{1}=i\right) \cdot P\left(Y_{2}=4-i\right)} \\
& =\frac{1 / 2^{3} \cdot 1 / 2^{3}}{\sum_{i=0}^{4} 1 / 2^{i+1} \cdot 1 / 2^{4-i+1}} \\
& =\frac{1 / 2^{6}}{5 / 2^{6}}=\frac{1}{5} .
\end{aligned}
$$

Thus, (iii) is true.
(d) Let Y_{i} be the number of daughters of the i-th elephantess and $X_{i}=Y_{i}+1$ for $1 \leq i \leq 1000$. The variables X_{i} are independent and $G(1 / 2)$-distributed. We have:

$$
\begin{aligned}
P\left(Y_{1}+Y_{2}+\ldots+Y_{1000}=1200\right) & =P\left(\sum_{i=1}^{1000}\left(X_{i}-1\right)=1200\right) \\
& =P\left(\sum_{i=1}^{1000} X_{i}-1000=1200\right) \\
& =P\left(\sum_{i=1}^{1000} X_{i}=2200\right) .
\end{aligned}
$$

Clearly, $\sum_{i=1}^{1000} X_{i} \sim \bar{B}(1000,1 / 2)$. In particular,

$$
\begin{aligned}
P\left(\sum_{i=1}^{1000} X_{i}=2200\right) & =\binom{2200-1}{1200} \cdot 1 / 2^{1000} \cdot 1 / 2^{1200} \\
& =\binom{2199}{1200} \cdot 1 / 2^{2200}
\end{aligned}
$$

so that:

$$
P\left(Y_{1}+Y_{2}+\ldots+Y_{1000}=1200\right)=\frac{\binom{2199}{1200}}{2^{2200}}
$$

Thus, (i) is true.
(e) According to the solution of the preceding part, the total number S of daughters is distributed as $W-1000$, where $W \sim \bar{B}(1000,1 / 2)$.
Hence

$$
E(S)=E(W)-1000=2 \cdot 1000-1000=1000 .
$$

Markov's Inequality implies:

$$
P(S \geq 2500) \leq \frac{E(S)}{2500}=0.4
$$

Thus, (iv) is true.
2. (a) Obviously, $Y_{i} \sim B(i, 1 / i), \quad 1 \leq i \leq n$, and in particular $Y_{1000} \sim$ $B(1000,1 / 1000)$. By the Poissonian approximation of the binomial distribution, Y_{1000} is distributed approximately $P(1)$. It follows that the required probability is approximately

$$
\frac{P^{2}\left(Y_{1000}=3\right)}{P\left(Y_{1000}=6\right)} \approx \frac{\left(\frac{e^{-1}}{3!}\right)^{2}}{\frac{e^{-1}}{6!}}=\frac{20}{e} .
$$

Thus, (v) is true.
(b) Let A be the event in question. Clearly,

$$
P(A)=1-P(\bar{A}) .
$$

The event \bar{A} is equivalent to the event studied in the absentminded secretary problem, and its probability for large values of n is approximately $1 / e$. Hence:

$$
P(A) \approx 1-1 / e \approx 0.63
$$

Thus, (ii) is true.
(c) Let B be the event in question. Clearly, the number 100 can appear only at the 100 -th stage, the number 99 - at the 99 -th or 100 -th stages, and the number 98 - at the 98 -th, 99 -th or 100 -th stages. For $n=98,99,100$, let E_{n} be the event whereby none of the above three numbers have been selected at the n-th stage. Thus,

$$
\begin{aligned}
P(B) & =P\left(E_{100}\right) \cdot P\left(E_{99}\right) \cdot P\left(E_{98}\right) \\
& =\left(\frac{97}{100}\right)^{100} \cdot\left(\frac{97}{99}\right)^{99} \cdot\left(\frac{97}{98}\right)^{98} \\
& =\left(1-\frac{3}{100}\right)^{100} \cdot\left(1-\frac{2}{99}\right)^{99} \cdot\left(1-\frac{1}{98}\right)^{97} \\
& \approx e^{-3} \cdot e^{-2} \cdot e^{-1}=e^{-6} .
\end{aligned}
$$

Thus, (iv) is true.
(d) Let X_{i} be the i-th number selected at the 15 -th stage and

$$
I_{i}=\left\{\begin{array}{lc}
1, & X_{i}=15 \\
0, & \text { otherwise }
\end{array}\right.
$$

Note that the variables $X_{i}, \quad 1 \leq i \leq 15$, are independent $U[1,15]$ distributed, and the variables $I_{i}, \quad 1 \leq i \leq 15$, are independent $B(1,1 / 2)$-distributed. In terms of these variables, $S_{15}=\sum_{i=1}^{15} X_{i}$ and $Y_{15}=\sum_{j=1}^{15} I_{j}$. Hence:

$$
\begin{aligned}
\operatorname{Cov}\left(S_{15}, Y_{15}\right) & =\operatorname{Cov}\left(\sum_{i=1}^{15} X_{i}, \sum_{j=1}^{15} I_{j}\right) \\
& =\sum_{i=1}^{15} \operatorname{Cov}\left(X_{i}, I_{i}\right)+\sum_{i=1}^{15} \sum_{1 \leq j \neq i \leq 15} \operatorname{Cov}\left(X_{i}, I_{j}\right) .
\end{aligned}
$$

Since for $i \neq j$ the variables X_{i} and I_{j} are independent, $\operatorname{Cov}\left(X_{i}, I_{j}\right)=$ 0 . Therefore:

$$
\begin{equation*}
\operatorname{Cov}\left(S_{15}, Y_{15}\right)=\sum_{i=1}^{15} \operatorname{Cov}\left(X_{i}, I_{i}\right)=15 \cdot \operatorname{Cov}\left(X_{1}, I_{1}\right) \tag{8}
\end{equation*}
$$

Since $E\left(X_{1}\right)=(1+15) / 2=8$, and $E\left(I_{1}\right)=1 / 15$, and

$$
E\left(X_{1} \cdot I_{1}\right)=15 \cdot \frac{1}{15}=1
$$

we obtain

$$
\operatorname{Cov}\left(X_{1}, I_{1}\right)=E\left(X_{1} \cdot I_{1}\right)-E\left(X_{1}\right) E\left(I_{1}\right)=1-8 / 15=7 / 15 .
$$

Substituting $\operatorname{Cov}\left(X_{1}, I_{1}\right)$ in (8), we get

$$
\operatorname{Cov}\left(S_{15}, Y_{15}\right)=15 \cdot 7 / 15=7
$$

Thus, (i) is true.
(e) For $1 \leq i \leq 24$, let $X_{j i}, \quad 1 \leq j \leq i$, be the j-th number selected at the i-th stage. For an arbitrary fixed stage i, the random variables $X_{j i}, \quad 1 \leq j \leq i$, are independent and $U[1, i]$-distributed. In these terms, $S_{i}=\sum_{j=1}^{i} X_{j i}, \quad 1 \leq i \leq 24$, and thus

$$
E\left(S_{i}\right)=\sum_{j=1}^{i} E\left(X_{j i}\right)=i \cdot E\left(X_{1 i}\right)=\frac{i(i+1)}{2}=\binom{i+1}{2}
$$

and
$V\left(S_{i}\right)=\sum_{j=1}^{i} V\left(X_{j i}\right)=i \cdot V\left(X_{1 i}\right)=i \cdot \frac{(i-1+1)^{2}-1}{12}=\frac{1}{2}\binom{i+1}{3}$.
Since

$$
\begin{equation*}
S=\sum_{i=1}^{24} S_{i} \tag{9}
\end{equation*}
$$

we obtain

$$
E(S)=\sum_{i=1}^{24} E\left(S_{i}\right)=\sum_{i=1}^{24}\binom{i+1}{2}=\binom{26}{3}=2600
$$

and

$$
V(S)=\sum_{i=1}^{24} V\left(S_{i}\right)=\frac{1}{2} \sum_{i=1}^{24}\binom{i+1}{3}=\frac{1}{2}\binom{26}{4}=7475 .
$$

Chebyshev's Inequality yields:

$$
P(|S-2600| \leq \varepsilon) \geq 1-\frac{7475}{\varepsilon^{2}}
$$

In particular, for $\varepsilon=250$:

$$
\begin{aligned}
P\left(2350 \leq S_{1000} \leq 2850\right) & =P(|S-2600| \leq 250) \\
& \geq 1-\frac{7475}{250^{2}} \approx 0.88
\end{aligned}
$$

Thus, (iii) is true.
3. (a) For an arbitrary fixed stage $n \geq 1$, let A_{1} be the event whereby both Reuven gets 1 shekel from Shimon and Shimon gets 1 shekel from Reuven at this stage, and let A_{2} be the event whereby neither Reuven nor Shimon get money at this stage. In these terms

$$
\left\{X_{n}=0\right\}=A_{1} \cup A_{2}, \quad n \geq 1 .
$$

Clearly, $A_{1} \cap A_{2}=\emptyset$ and therefore

$$
P\left(X_{n}=0\right)=P\left(A_{1}\right)+P\left(A_{2}\right)=\frac{1}{4} \cdot \frac{1}{6}+\frac{3}{4} \cdot \frac{5}{6}=\frac{2}{3} .
$$

Thus, (ii) is true.
(b)

$$
P\left(X_{n+1}=0 \mid X_{n}=0\right)=\frac{P\left(X_{n}=X_{n+1}=0\right)}{P\left(X_{n}=0\right)}
$$

The values of X_{n} and X_{n+1} depend on 5 tosses - the tosses of the coin at stages $n-1, n, n+1$, and those of the die at stages n and $n+1$. Denote by $\left(c_{1}, c_{2}, c_{3}, a, b\right)$ the event whereby the coin shows $c_{1}, c_{2}, c_{3} \in\{H, T\}$ and the die shows $a, b \in\{6, \overline{6}\}$ at the
relevant stages. (Here $\overline{6}$ means any result but 6.) A component will assume the value $*$ when the event consists of both options for it. It is easy to verify that

$$
\begin{aligned}
\left\{X_{n}=X_{n+1}=0\right\}= & (*, T, *, \overline{6}, \overline{6}) \cup(T, H, T, \overline{6}, \overline{6}) \cup(H, H, T, 6, \overline{6}) \cup \\
& \cup(T, H, H, \overline{6}, 6) \cup(H, H, H, 6,6) .
\end{aligned}
$$

Therefore:
$P\left(X_{n}=X_{n+1}=0\right)=\frac{1}{2} \cdot \frac{25}{36}+\frac{1}{8} \cdot \frac{25}{36}+\frac{1}{8} \cdot \frac{5}{36}+\frac{1}{8} \cdot \frac{5}{36}+\frac{1}{8} \cdot \frac{1}{36}=\frac{17}{36}$.
Hence, by the previous part:

$$
P\left(X_{n+1}=0 \mid X_{n}=0\right)=\frac{17 / 36}{2 / 3}=\frac{17}{24} .
$$

Thus, (ii) is true.
(c) One can easily verify that the probability function of each X_{n} is given by the following table:

x	-1	0	1
p	$1 / 8$	$2 / 3$	$5 / 24$

Thus,

$$
E\left(X_{n}\right)=(-1) \cdot \frac{1}{8}+0 \cdot \frac{2}{3}+1 \cdot \frac{5}{24}=\frac{1}{12},
$$

and

$$
V\left(X_{n}\right)=E\left(X_{n}^{2}\right)-E^{2}\left(X_{n}\right)=\frac{1}{8}+\frac{5}{24}-\left(\frac{1}{12}\right)^{2}=\frac{47}{144} .
$$

Thus, (iii) is true.
(d) $\bar{X}_{1}, \bar{X}_{2}, \ldots$ are dependent. Indeed, for example, $P\left(\bar{X}_{1}=1, \bar{X}_{2}=\right.$ $-1)=P\left(X_{1}=1, X_{1}=X_{2}=-1\right)=0$, while $P\left(\bar{X}_{1}=1\right)=$ $P\left(X_{1}=1\right)=1 / 8$, and $P\left(\bar{X}_{2}=-1\right)=P\left(X_{1}=X_{2}=-1\right)>0$. In fact, to show the last inequality, we calculate the left-hand side. The values of X_{1} and X_{2} depend on 5 tosses - the tosses of the coin at stages $0,1,2$, and those of the die at stages 1 and 2 . As in part (b), denote by $\left(c_{1}, c_{2}, c_{3}, a, b\right)$ the event whereby the coin
shows $c_{1}, c_{2}, c_{3} \in\{H, T\}$ and the die shows $a, b \in\{6, \overline{6}\}$ at the relevant stages. It is easy to verify that

$$
\left\{X_{1}=X_{2}=-1\right\}=(*, T, *, 6,6) \cup(T, H, T, 6,6) .
$$

Therefore:

$$
P\left(\bar{X}_{2}=-1\right)=P\left(X_{1}=X_{2}=-1\right)=\frac{1}{2} \cdot \frac{1}{36}+\frac{1}{8} \cdot \frac{1}{36}=\frac{5}{288} .
$$

Hence:

$$
P\left(\bar{X}_{1}=1, \bar{X}_{2}=-1\right) \neq P\left(\bar{X}_{1}=1\right) \cdot P\left(\bar{X}_{2}=-1\right) .
$$

In general, any two adjacent random variables X_{n} and X_{n+1}, $n \geq 1$, are dependent, but X_{n} and $X_{n+j}, \quad n \geq 1, \quad j \geq 2$, are independent, since they depend on distinct tosses. Now, rewriting \bar{X}_{n} in the form

$$
\begin{equation*}
\bar{X}_{n}=\frac{1}{2} \cdot \frac{X_{1}+X_{3}+\ldots+X_{n-1}}{n / 2}+\frac{1}{2} \cdot \frac{X_{2}+X_{4}+\ldots+X_{n}}{n / 2} \tag{10}
\end{equation*}
$$

for even n and in the form
$\bar{X}_{n}=\frac{n+1}{2 n} \cdot \frac{X_{1}+X_{3}+\ldots+X_{n}}{(n+1) / 2}+\frac{n-1}{2 n} \cdot \frac{X_{2}+X_{4}+\ldots+X_{n-1}}{(n-1) / 2}$
for odd n, one can easily prove that \bar{X}_{n} converges to $E\left(X_{1}\right)=$ $1 / 12$, and therefore (iv) is true. We now prove that $\left(\bar{X}_{n}\right)_{n=1}^{\infty}$ satisfies the law of large numbers. Denote:

$$
Y_{n}=\frac{1}{n} \cdot\left(\bar{X}_{1}+\bar{X}_{2}+\ldots+\bar{X}_{n}\right) .
$$

Clearly, $E\left(Y_{n}\right)=E\left(X_{1}\right)=1 / 12$ and $Y_{n}=\frac{\sum_{i=1}^{n} c_{i} X_{i}}{n}$, where $c_{i}=$ $\sum_{j=i}^{n} \frac{1}{i}, \quad 1 \leq i \leq n$. Since $\operatorname{Cov}\left(X_{n}, X_{n+j}\right)=0$ for $n \geq 1, j \geq 2$, and $c_{1} \geq c_{2} \geq \ldots \geq c_{n}$,

$$
\begin{aligned}
V\left(Y_{n}\right) & =\frac{1}{n^{2}}\left(\sum_{i=1}^{n} c_{i}^{2} V\left(X_{i}\right)+2 \sum_{1 \leq i<j \leq n} c_{i} c_{j} \operatorname{Cov}\left(X_{s}, X_{k}\right)\right) \\
& \leq \frac{c_{1}^{2}}{n^{2}}\left(n V\left(X_{1}\right)+2 \sum_{i=1}^{n-1} \operatorname{Cov}\left(X_{i}, X_{i+1}\right)\right) \\
& \leq \frac{c_{1}^{2}}{n^{2}}\left(n V\left(X_{1}\right)+2(n-1) \operatorname{Cov}\left(X_{1}, X_{2}\right)\right) .
\end{aligned}
$$

Now $c_{1}=\sum_{j=1}^{n} \frac{1}{i} \leq 1+\ln n$, and therefore:

$$
V\left(Y_{n}\right) \leq \frac{(1+\ln n)^{2}}{n}\left(V\left(X_{1}\right)+2 \cdot \operatorname{Cov}\left(X_{1}, X_{2}\right)\right)
$$

Thus

$$
V\left(\bar{S}_{n}\right) \longrightarrow 0, \quad n \longrightarrow \infty,
$$

and Chebyshev's Inequality implies that $\left(\bar{X}_{n}\right)$ satisfies the weak law of large numbers. Thus, (iv) is the only true claim.
(e) Denote $Y_{i}=X_{2 i}, \quad 1 \leq i \leq 4176$. With this notation, $X=$ $\sum_{i=1}^{4176} Y_{i}$. Obviously, $Y_{i}, \quad 1 \leq i \leq 4176$, are independent random variables with $E\left(Y_{i}\right)=E\left(X_{2}\right)=1 / 12$ and $V\left(Y_{i}\right)=V\left(X_{2}\right)=$ 47/144. Hence

$$
\begin{aligned}
P(290 \leq X \leq 377) & =P\left(\frac{290-4176 \cdot 1 / 12}{\sqrt{4176 \cdot 47 / 144}} \leq \frac{X-4176 \cdot 1 / 12}{\sqrt{4176 \cdot 47 / 144}} \leq \frac{377-4176 \cdot 1 / 12}{\sqrt{4176 \cdot 47 / 144}}\right) \\
& \approx P(-1.57 \leq Z \leq 0.78),
\end{aligned}
$$

where Z is a standard normal variable. Therefore:

$$
\begin{aligned}
P(290 \leq X \leq 377) & \approx \Phi(0.78)-\Phi(-1.57) \\
& =0.7823-0.0582=0.7241
\end{aligned}
$$

Thus, (iii) is true.
4. (a) Let us first find the distribution function F_{H} of H. Clearly, $X \sim U(0,1)$ and $H=\sqrt{X^{2}+(1-X)^{2}}$. Obviously, $\frac{\sqrt{2}}{2} \leq H \leq 1$. Hence, $F_{H}(t)=0$ for $t<\frac{\sqrt{2}}{2}$ and $F_{H}(t)=1$ for $t>1$. For

$$
\begin{aligned}
t \in[\sqrt{2} / 2,1] & : \\
F_{H}(t) & =P\left(\sqrt{X^{2}+(1-X)^{2}} \leq t\right) \\
& =P\left(X^{2}+(1-X)^{2} \leq t^{2}\right) \\
& =P\left(X^{2}-X+\frac{1-t^{2}}{2} \leq 0\right) \\
& =P\left(\frac{1-\sqrt{2 t^{2}-1}}{2} \leq X \leq \frac{1+\sqrt{2 t^{2}-1}}{2}\right) \\
& =F_{X}\left(\frac{1+\sqrt{2 t^{2}-1}}{2}\right)-F_{X}\left(\frac{1-\sqrt{2 t^{2}-1}}{2}\right) \\
& =\frac{1+\sqrt{2 t^{2}-1}}{2}-\frac{1-\sqrt{2 t^{2}-1}}{2} \\
& =\sqrt{2 t^{2}-1}
\end{aligned}
$$

Therefore, the density function of H is

$$
f_{H}(t)=\left(F_{H}(t)\right)^{\prime}= \begin{cases}\frac{2 t}{\sqrt{2 t^{2}-1}}, & \frac{\sqrt{2}}{2} \leq t \leq 1 \\ 0, & \text { otherwise }\end{cases}
$$

Thus, (i) is true.
(b) Since $S_{\triangle}=\frac{X(1-X)}{2}$ and $X \sim U(0,1)$, we have $0 \leq S_{\triangle} \leq \frac{1}{8}$. Hence,

$$
\begin{aligned}
F_{S_{\triangle}}(t)= & 0 \text { for } t<0 \text { and } F_{S_{\triangle}}(t)=1, \text { for } t>\frac{1}{8} \text {. For } t \in[0,1 / 8] \text { : } \\
F_{S_{\triangle}}(t) & =P\left(\frac{X(1-X)}{2} \leq t\right) \\
& =P\left(X^{2}-X+2 t \geq 0\right) \\
& =P\left(X \leq \frac{1-\sqrt{1-8 t}}{2}\right)+P\left(X \geq \frac{1+\sqrt{1-8 t}}{2}\right) \\
& =F_{X}\left(\frac{1-\sqrt{1-8 t}}{2}\right)+1-F_{X}\left(\frac{1+\sqrt{1-8 t}}{2}\right) \\
& =\frac{1-\sqrt{1-8 t}}{2}+1-\frac{1+\sqrt{1-8 t}}{2} \\
& =1-\sqrt{1-8 t} .
\end{aligned}
$$

Thus, (iii) is true.
(c) First of all, it will be convenient to rewrite S_{\triangle} in the following form:

$$
\begin{aligned}
S_{\triangle} & =\frac{X(1-X)}{2} \\
& =\frac{1}{2} \cdot\left(-\left(X-\frac{1}{2}\right)^{2}+\frac{1}{4}\right) \\
& =\frac{1}{2} \cdot\left(-(X-E(X))^{2}+\frac{1}{4}\right) .
\end{aligned}
$$

Thus:

$$
\begin{aligned}
E\left(S_{\triangle}\right) & =E\left(\frac{1}{2} \cdot\left(-(X-E(X))^{2}+\frac{1}{4}\right)\right) \\
& =\frac{1}{2} \cdot\left(-E\left((X-E(X))^{2}\right)+\frac{1}{4}\right) \\
& =\frac{1}{2} \cdot\left(-V(X)+\frac{1}{4}\right) \\
& =\frac{1}{2} \cdot\left(-\frac{1}{12}+\frac{1}{4}\right)=\frac{1}{12} .
\end{aligned}
$$

Note that by part (b) we can also calculate $E\left(S_{\Delta}\right)$ by the definition.
Thus, (iv) is true.
(d) One can easily see that

$$
S_{\square}=H^{2}=X^{2}+(1-X)^{2}=1-4 \cdot \frac{X(1-X)}{2}=1-4 S_{\triangle},
$$

which yields

$$
\rho\left(S_{\triangle}, S_{\square}\right)=-1
$$

Thus, (i) is true.
(e) A linear approximation near 0 yields:

$$
\begin{aligned}
\psi(0.003) & \approx \psi(0)+\psi^{\prime}(0) \cdot 0.003 \\
& =1+E\left(S_{\square}\right) \cdot 0.003 \\
& =1+\left(1-4 \cdot E\left(S_{\triangle}\right)\right) \cdot 0.003 \\
& =1+(1-4 \cdot 1 / 12) \cdot 0.003=1.002 .
\end{aligned}
$$

Thus, (iii) is true.

