
Final #1

Mark the correct answer in each part of the following questions.

1. The number of daughters of a random Tanzanian elephantess is dis-
tributed as X − 1, where X ∼ G(1/2).

(a) The probability for a random Tanzanian elephantess to have 2
granddaughters (which here means only daughters of daughters,
and not daughters of sons) is:

(i) 1/32.

(ii) 2/27.

(iii) 3/16.

(iv) 2/9.

(v) None of the above.

(b) If a random elephantess has 3 granddaughters (again, daughters
of daughters), then the probability she has 2 daughters is

(i) 37/156.

(ii) 27/104.

(iii) 119/417.

(iv) 243/832.

(v) None of the above.

(c) Two random elephantesses have jointly 4 daughters. The proba-
bility that each has two daughters is

(i) 1/16.

(ii) 1/9.

(iii) 1/5.

(iv) 1/4.
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(v) None of the above.

(d) In one of the parks in Tanzania there are altogether 1000 ele-
phantesses. The probability that they will have altogether 1200
daughters is:

(i)
(2199
1200)
22200 .

(ii)
(2199
1200)
22199 .

(iii)
(2200
1200)
22200 .

(iv)
(2200
1200)
22199 .

(v) None of the above.

(e) Markov’s Inequality implies that the probability that the 1000
elephantesses above will have at least 2500 daughters altogether
is at most

(i) 0.1.

(ii) 0.2.

(iii) 0.3.

(iv) 0.4.

(v) None of the above.

Remark: We mean here the best bound that be reached. For
example, if Markov’s Inequality implies that the above probability
is at most 0.1, hence it is also at most 0.2, and (0.3 and 0.4), but
only (i) should be marked as the correct answer.

2. An experiment consists of n ≥ 1 stages. In each stage i we select
uniformly randomly i integers between 1 and i. (Thus, altogether n(n+1)
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numbers are chosen.) For 1 ≤ i ≤ n, let Yi be the number of times the
number i was selected at the i-th stage, Si the sum of all i numbers
selected at the i-th stage, and S =

∑n
i=1 Si. (For example, if n = 5 and

the selected numbers have been 1, 2, 1, 2, 3, 1, 2, 1, 4, 4, 5, 5, 5, 1, 5, then
Y1 = Y2 = Y3 = 1, Y4 = 2, Y5 = 4, S1 = 1, S2 = 3, S3 = 6, S4 = 11, S5 =

21, S = 42.) (Hint:
∑n

i=1 i
2 = n(n+1)(2n+1)

6
,
∑n

i=1 i
3 = n2(n+1)2

4
.)

(a) The ratio P (Y1000 = 3)2/P (Y1000 = 6) is approximately
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(i) 5.

(ii) 10.

(iii) 20.

(iv) 40.

(v) None of the above.

(b) Suppose it is known that at the 100-th stage all numbers between
1 and 100 have been selected. The probability that at least one of
them was equal to the number indicating its location within the
selected numbers (namely, either the first number was 1, or the
second was 2, . . ., or the last one was 100) is

(i) approximately 0.37.

(ii) approximately 0.63.

(iii) approximately 0.76.

(iv) very close to 1.

(v) None of the above.

(c) If n = 100, then the probability for all three numbers 98, 99, 100
not to be selected even once (out of all 5050 selected numbers) is
approximately

(i) 1/e2.

(ii) 1/e3.

(iii) 1/e4.

(iv) 1/e6.

(v) None of the above.

(d) Cov(S15, Y15) =

(i) 7.

(ii) 7.5.

(iii) 8.

(iv) 8.5.

(v) None of the above.
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(e) A direct application of Chebyshev’s Inequality for n = 24 yields
the following (where the bounds on the right-hand side are ap-
proximate):

(i) P (2350 ≤ S ≤ 2850) ≥ 0.78.

(ii) P (2350 ≤ S ≤ 2850) ≥ 0.83.

(iii) P (2350 ≤ S ≤ 2850) ≥ 0.88.

(iv) P (2350 ≤ S ≤ 2850) ≥ 0.93.

(v) None of the above.

Remark: We mean here the best bound, which can that be
reached. For example, if Chebyshev’s Inequality implies that the
above probability is at least 0.93, hence it is also at least 0.88, and
(0.83 and 0.78), but only (iv) should be marked as the correct an-
swer.

3. Reuven and Shimon play an infinite-stage game, as follows. At stage
0 they toss a coin. At each stage n ≥ 1 they toss both a coin and a
die. If the coin shows a head at both stages n− 1 and n, Reuven gets
1 shekel from Shimon. If the die shows a 6 at the n-th stage, Shimon
gets one shekel from Reuven. Let Xn be the net profit of Reuven at the
n-th stage. (For example, if the coin showed T, T, H, H, H, H, T and
the die 6, 3, 1, 6, 5, 6, then X1 = X6 = −1, X2 = X4 = 0, X3 = X5 = 1.)

(a) For n ≥ 1 we have P (Xn = 0) =

(i) 1
2
.

(ii) 2
3
.

(iii) 3
4
.

(iv) 5
6
.

(v) None of the above.

(b) For n ≥ 1 P (Xn+1 = 0|Xn = 0) =

(i) 17/30.

(ii) 17/24.

(iii) 17/20.

(iv) 17/18.
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(v) None of the above.

(c) The expectation and variance of Xn are:

(i) E(Xn) = −1/12, V (Xn) = 29/144.

(ii) E(Xn) = 0, V (Xn) = 7/48.

(iii) E(Xn) = 1/12, V (Xn) = 47/144.

(iv) E(Xn) = 1/6, V (Xn) = 5/36.

(v) None of the above.

(d) Consider the sequence of averages:

X̄n =
X1 +X2 + . . .+Xn

n
.

(i) The random variables X̄1, X̄2, . . . are dependent, and with
probability 1 their sequence of values is dense in the interval
[−1, 1]. (That is, for every subinterval [a, b] ⊆ [−1, 1], one of
those values lies in the subinterval.)

(ii) The random variables X̄1, X̄2, . . . are independent and have
the same distribution as the variables Xn.

(iii) The random variables X̄1, X̄2, . . . are dependent, and there-
fore the sequence does not satisfy the weak law of large num-
bers.

(iv) P (|X̄n − 1/12| > ε) −→
n→∞

0 for every ε > 0.

(v) None of the above.

(e) Now assume that only even rounds qualify for wins, namely odd
rounds are still held but money is not moved on those rounds. Let
X be the total profit (positive or negative) of Reuven in the first
8352 rounds. Then P (290 ≤ X ≤ 377) ≈
(i) 0.18.

(ii) 0.36.

(iii) 0.72.

(iv) 0.82.

(v) None of the above.

4. A wooden rod of unit length is broken into two pieces at a uniformly
distributed point along it. The two pieces are put orthogonally to each
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other to generate the two perpendiculars of a right triangle. A plastic
rod of appropriate length is constructed to serve as the hypotenuse of
the triangle, and a square is constructed on this hypotenuse. Let X
be the length of the right part of the first rod, H – the length of the
hypotenuse, S4 the area of the triangle, and S� the area of the square.
(For example, if the right part of the wooden rod is of length 3/7, then
X = 3/7, H = 5/7, S4 = 6/49, and S� = 25/49.)

(a) The density function fH(h) is given by:

(i)

fH(h) =


2h√

2h2−1
,

√
2

2
≤ h ≤ 1,

0, otherwise.

(ii)

fH(h) =


√
h2 + (1− h)2, 0 ≤ h ≤ 1,

0, otherwise.

(iii)

fH(h) =


1√

h2+(1−h)2
, 0 ≤ h ≤ 1,

0, otherwise.

(iv)

fH(h) =


2h√

h2+(1−h)2
,

√
2

2
≤ h ≤ 1,

0, otherwise.

(v) None of the above.

(b) The distribution function FS4 of S4 is given by:

(i)

FS4(t) =


0, t < 0,
8t, 0 ≤ t ≤ 1/8,
1, t > 1/8.

(ii)

FS4(t) =


0, t < 0,

2
√

2t, 0 ≤ t ≤ 1/8,
1, t > 1/8.
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(iii)

FS4(t) =


0, t < 0,
1−
√

1− 8t, 0 ≤ t ≤ 1/8,
1, t > 1/8.

(iv)

FS4(t) =


0, t < 0,
9t− 8t2, 0 ≤ t ≤ 1/8,
1, t > 1/8.

(v) None of the above.

(c) E(S4) =

(i) 1/48.

(ii) 1/30.

(iii) 1/24.

(iv) 1/12.

(v) None of the above.

(d) ρ(S4, S�) =

(i) −1.

(ii) −1/2.

(iii) 0.

(iv) 1.

(v) None of the above.

(e) Let ψ be the moment generating function of S�. Then ψ(0.003) ≈
(i) 0.996.

(ii) 0.998.

(iii) 1.002.

(iv) 1.004.

(v) None of the above.

Solutions

1. (a) Let A be the event whereby a random Tanzanian elephantess has
2 granddaughters, and Hk, k ≥ 0, the event whereby she has k
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daughters. Then:

P (A) =
∞∑

k=0

P (A|Hk) · P (Hk)

=
∞∑

k=0

P (A|Hk) · P (X = k + 1)

=
∞∑

k=0

P (A|Hk) ·
(

1

2

)k+1

.

(1)

Let A1 be the event whereby the elephantess has two granddaugh-
ters, both daughters of the same mother, and A2 be the event
whereby it still has two granddaughters, but they have different
mothers. Clearly, A = A1∪A2, and the union is disjoint. In these
terms:

P (A|Hk) = P (A1|Hk) + P (A2|Hk), k ≥ 0.

Obviously, for k ≥ 0 we have

P (A1|Hk) =

(
k

1

)(
1

2

)3

·
(

1

2

)k−1

=

(
k

1

)(
1

2

)k+2

, (2)

and

P (A2|Hk) =

(
k

2

)(
1

2

)2

·
(

1

2

)2

·
(

1

2

)k−2

=

(
k

2

)(
1

2

)k+2

. (3)

Substituting (2) and (3) into (1) we obtain:

P (A) =
∞∑

k=0

((
k

1

)
+

(
k

2

))
·
(

1

2

)2k+3

=
1

8
·

(
∞∑

k=0

(
k

1

)
·
(

1

4

)k

+
∞∑

k=0

(
k

2

)
·
(

1

4

)k
)

=
1

8
·

(
1/4

(1− 1/4)2
+

(1/4)2

(1− 1/4)3

)
= 2/27.

Thus, (ii) is true.
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(b) Let C be the event whereby a random Tanzanian elephantess has
3 granddaughters, and Hk, k ≥ 0, the event whereby she has k
daughters. Then:

P (H2|C) =
P (C|H2) · P (H2)∑∞

k=0 P (C|Hk) · P (Hk)

=
P (C|H2) · P (X = 3)∑∞

k=0 P (C|Hk) · P (X = k + 1)

=
P (C|H2) · 1

8∑∞
k=0 P (C|Hk) ·

(
1
2

)k+1
.

(4)

Let C1, C2, C3 be the subevents of C whereby the three grand-
daughters have the same mother, two distinct mothers, three moth-
ers, respectively. Obviously, C = C1 ∪ C2 ∪ C3, and the union is
disjoint. In these terms:

P (C|Hk) = P (C1|Hk) + P (C2|Hk) + P (C3|Hk), k ≥ 0.

Obviously, for k ≥ 0 we have:

P (C1|Hk) =

(
k

1

)(
1

2

)4

·
(

1

2

)k−1

=

(
k

1

)(
1

2

)k+3

, (5)

P (C2|Hk) = 2 ·
(
k

2

)
·
(

1

2

)3

·
(

1

2

)2

·
(

1

2

)k−2

= 2 ·
(
k

2

)(
1

2

)k+3

,

(6)
and

P (C3|Hk) =

(
k

3

)
·
(

1

2

)2

·
(

1

2

)2

·
(

1

2

)2

·
(

1

2

)k−3

=

(
k

3

)(
1

2

)k+3

,

(7)
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Substituting (5), (6) and (7) into (4), we obtain:

P (H2|C) =

((
2
1

)
+ 2 ·

(
2
2

))
· 1

28∑∞
k=0

((
k
1

)
+ 2 ·

(
k
2

)
+
(

k
3

))
·
(

1
2

)2k+4

=
1/4∑∞

k=0

(
k
1

)
·
(

1
4

)k
+ 2 ·

∑∞
k=0

(
k
2

)
·
(

1
4

)k
+
∑∞

k=0

(
k
3

)
·
(

1
4

)k
=

1/4
1/4

(1−1/4)2
+ 2 · (1/4)2

(1−1/4)3
+ (1/4)3

(1−1/4)4

=
81

256
.

Thus, (v) is true.

(c) For i = 1, 2 denote by Yi the number of daughters of i-th ele-
phantesses. Hence:

P (Y1 = 2, Y2 = 2|Y1 + Y2 = 4) =
P (Y1 = 2, Y2 = 2)

P (Y1 + Y2 = 4)

=
P (Y1 = 2) · P (Y2 = 2)∑4

i=0 P (Y1 = i) · P (Y2 = 4− i)

=
P (Y1 = 2) · P (Y2 = 2)∑4

i=0 P (Y1 = i) · P (Y2 = 4− i)

=
1/23 · 1/23∑4

i=0 1/2i+1 · 1/24−i+1

=
1/26

5/26
=

1

5
.

Thus, (iii) is true.

(d) Let Yi be the number of daughters of the i-th elephantess and
Xi = Yi + 1 for 1 ≤ i ≤ 1000. The variables Xi are independent
and G(1/2)-distributed. We have:

P (Y1 + Y2 + . . .+ Y1000 = 1200) = P

(
1000∑
i=1

(Xi − 1) = 1200

)

= P

(
1000∑
i=1

Xi − 1000 = 1200

)

= P

(
1000∑
i=1

Xi = 2200

)
.
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Clearly,
∑1000

i=1 Xi ∼ B(1000, 1/2). In particular,

P

(
1000∑
i=1

Xi = 2200

)
=

(
2200− 1

1200

)
· 1/21000 · 1/21200

=

(
2199

1200

)
· 1/22200,

so that:

P (Y1 + Y2 + . . .+ Y1000 = 1200) =

(
2199
1200

)
22200

.

Thus, (i) is true.

(e) According to the solution of the preceding part, the total number S
of daughters is distributed as W −1000, where W ∼ B(1000, 1/2).
Hence

E(S) = E(W )− 1000 = 2 · 1000− 1000 = 1000.

Markov’s Inequality implies:

P (S ≥ 2500) ≤ E(S)

2500
= 0.4.

Thus, (iv) is true.

2. (a) Obviously, Yi ∼ B(i, 1/i), 1 ≤ i ≤ n, and in particular Y1000 ∼
B(1000, 1/1000). By the Poissonian approximation of the binomial
distribution, Y1000 is distributed approximately P (1). It follows
that the required probability is approximately

P 2(Y1000 = 3)

P (Y1000 = 6)
≈

(
e−1

3!

)2

e−1

6!

=
20

e
.

Thus, (v) is true.
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(b) Let A be the event in question. Clearly,

P (A) = 1− P (A).

The event A is equivalent to the event studied in the absent-
minded secretary problem, and its probability for large values of
n is approximately 1/e. Hence:

P (A) ≈ 1− 1/e ≈ 0.63.

Thus, (ii) is true.

(c) Let B be the event in question. Clearly, the number 100 can appear
only at the 100-th stage, the number 99 − at the 99-th or 100-th
stages, and the number 98 − at the 98-th, 99-th or 100-th stages.
For n = 98, 99, 100, let En be the event whereby none of the above
three numbers have been selected at the n-th stage. Thus,

P (B) = P (E100) · P (E99) · P (E98)

=

(
97

100

)100

·
(

97

99

)99

·
(

97

98

)98

=

(
1− 3

100

)100

·
(

1− 2

99

)99

·
(

1− 1

98

)97

≈ e−3 · e−2 · e−1 = e−6.

Thus, (iv) is true.

(d) Let Xi be the i-th number selected at the 15-th stage and

Ii =


1, Xi = 15,

0, otherwise.

Note that the variables Xi, 1 ≤ i ≤ 15, are independent U [1, 15]-
distributed, and the variables Ii, 1 ≤ i ≤ 15, are independent
B(1, 1/2)-distributed. In terms of these variables, S15 =

∑15
i=1Xi

and Y15 =
∑15

j=1 Ij. Hence:

Cov(S15, Y15) = Cov

(
15∑
i=1

Xi,

15∑
j=1

Ij

)

=
15∑
i=1

Cov(Xi, Ii) +
15∑
i=1

∑
1≤j 6=i≤15

Cov(Xi, Ij).
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Since for i 6= j the variablesXi and Ij are independent, Cov(Xi, Ij) =
0. Therefore:

Cov(S15, Y15) =
15∑
i=1

Cov(Xi, Ii) = 15 · Cov(X1, I1). (8)

Since E(X1) = (1 + 15)/2 = 8, and E(I1) = 1/15, and

E(X1 · I1) = 15 · 1

15
= 1,

we obtain

Cov(X1, I1) = E(X1 · I1)− E(X1)E(I1) = 1− 8/15 = 7/15.

Substituting Cov(X1, I1) in (8), we get

Cov(S15, Y15) = 15 · 7/15 = 7.

Thus, (i) is true.

(e) For 1 ≤ i ≤ 24, let Xji, 1 ≤ j ≤ i, be the j-th number selected at
the i-th stage. For an arbitrary fixed stage i, the random variables
Xji, 1 ≤ j ≤ i, are independent and U [1, i]-distributed. In these
terms, Si =

∑i
j=1Xji, 1 ≤ i ≤ 24, and thus

E(Si) =
i∑

j=1

E(Xji) = i · E(X1i) =
i(i+ 1)

2
=

(
i+ 1

2

)
,

and

V (Si) =
i∑

j=1

V (Xji) = i·V (X1i) = i· (i− 1 + 1)2 − 1

12
=

1

2

(
i+ 1

3

)
.

Since

S =
24∑
i=1

Si, (9)

we obtain

E(S) =
24∑
i=1

E(Si) =
24∑
i=1

(
i+ 1

2

)
=

(
26

3

)
= 2600,
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and

V (S) =
24∑
i=1

V (Si) =
1

2

24∑
i=1

(
i+ 1

3

)
=

1

2

(
26

4

)
= 7475.

Chebyshev’s Inequality yields:

P (|S − 2600| ≤ ε) ≥ 1− 7475

ε2
.

In particular, for ε = 250:

P (2350 ≤ S1000 ≤ 2850) = P (|S − 2600| ≤ 250)

≥ 1− 7475

2502
≈ 0.88.

Thus, (iii) is true.

3. (a) For an arbitrary fixed stage n ≥ 1, let A1 be the event whereby
both Reuven gets 1 shekel from Shimon and Shimon gets 1 shekel
from Reuven at this stage, and let A2 be the event whereby neither
Reuven nor Shimon get money at this stage. In these terms

{Xn = 0} = A1 ∪ A2, n ≥ 1.

Clearly, A1 ∩ A2 = ∅ and therefore

P (Xn = 0) = P (A1) + P (A2) =
1

4
· 1

6
+

3

4
· 5

6
=

2

3
.

Thus, (ii) is true.

(b)

P (Xn+1 = 0|Xn = 0) =
P (Xn = Xn+1 = 0)

P (Xn = 0)
.

The values of Xn and Xn+1 depend on 5 tosses − the tosses of
the coin at stages n− 1, n, n+ 1, and those of the die at stages n
and n + 1. Denote by (c1, c2, c3, a, b) the event whereby the coin
shows c1, c2, c3 ∈ {H,T} and the die shows a, b ∈ {6, 6} at the
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relevant stages. (Here 6 means any result but 6.) A component
will assume the value ∗ when the event consists of both options
for it. It is easy to verify that

{Xn = Xn+1 = 0}=(∗, T, ∗, 6, 6) ∪ (T,H, T, 6, 6) ∪ (H,H, T, 6, 6) ∪
∪(T,H,H, 6, 6) ∪ (H,H,H, 6, 6).

Therefore:

P (Xn = Xn+1 = 0) =
1

2
· 25

36
+

1

8
· 25

36
+

1

8
· 5

36
+

1

8
· 5

36
+

1

8
· 1

36
=

17

36
.

Hence, by the previous part:

P (Xn+1 = 0|Xn = 0) =
17/36

2/3
=

17

24
.

Thus, (ii) is true.

(c) One can easily verify that the probability function of each Xn is
given by the following table:

x −1 0 1
p 1/8 2/3 5/24

Thus,

E(Xn) = (−1) · 1

8
+ 0 · 2

3
+ 1 · 5

24
=

1

12
,

and

V (Xn) = E(X2
n)− E2(Xn) =

1

8
+

5

24
−
(

1

12

)2

=
47

144
.

Thus, (iii) is true.

(d) X̄1, X̄2, . . . are dependent. Indeed, for example, P (X̄1 = 1, X̄2 =
−1) = P (X1 = 1, X1 = X2 = −1) = 0, while P (X̄1 = 1) =
P (X1 = 1) = 1/8, and P (X̄2 = −1) = P (X1 = X2 = −1) > 0. In
fact, to show the last inequality, we calculate the left-hand side.
The values of X1 and X2 depend on 5 tosses − the tosses of the
coin at stages 0, 1, 2, and those of the die at stages 1 and 2. As
in part (b), denote by (c1, c2, c3, a, b) the event whereby the coin
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shows c1, c2, c3 ∈ {H,T} and the die shows a, b ∈ {6, 6} at the
relevant stages. It is easy to verify that

{X1 = X2 = −1} = (∗, T, ∗, 6, 6) ∪ (T,H, T, 6, 6).

Therefore:

P (X̄2 = −1) = P (X1 = X2 = −1) =
1

2
· 1

36
+

1

8
· 1

36
=

5

288
.

Hence:

P (X̄1 = 1, X̄2 = −1) 6= P (X̄1 = 1) · P (X̄2 = −1).

In general, any two adjacent random variables Xn and Xn+1,
n ≥ 1, are dependent, but Xn and Xn+j, n ≥ 1, j ≥ 2, are
independent, since they depend on distinct tosses. Now, rewriting
X̄n in the form

X̄n =
1

2
· X1 +X3 + . . .+Xn−1

n/2
+

1

2
· X2 +X4 + . . .+Xn

n/2
(10)

for even n and in the form

X̄n =
n+ 1

2n
·X1 +X3 + . . .+Xn

(n+ 1)/2
+
n− 1

2n
·X2 +X4 + . . .+Xn−1

(n− 1)/2
(11)

for odd n, one can easily prove that X̄n converges to E(X1) =
1/12, and therefore (iv) is true. We now prove that (X̄n)∞n=1 sat-
isfies the law of large numbers. Denote:

Yn =
1

n
·
(
X̄1 + X̄2 + . . .+ X̄n

)
.

Clearly, E(Yn) = E(X1) = 1/12 and Yn =
Pn

i=1 ciXi

n
, where ci =∑n

j=i
1
i
, 1 ≤ i ≤ n. Since Cov(Xn, Xn+j) = 0 for n ≥ 1, j ≥ 2,

and c1 ≥ c2 ≥ . . . ≥ cn,

V (Yn) =
1

n2

(
n∑

i=1

c2iV (Xi) + 2
∑

1≤i<j≤n

cicjCov(Xs, Xk)

)

≤ c21
n2

(
nV (X1) + 2

n−1∑
i=1

Cov(Xi, Xi+1)

)

≤ c21
n2

(nV (X1) + 2(n− 1)Cov(X1, X2)) .
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Now c1 =
∑n

j=1
1
i
≤ 1 + lnn, and therefore:

V (Yn) ≤ (1 + lnn)2

n
(V (X1) + 2 · Cov(X1, X2)) .

Thus
V (S̄n) −→ 0, n −→∞,

and Chebyshev’s Inequality implies that (X̄n) satisfies the weak
law of large numbers. Thus, (iv) is the only true claim.

(e) Denote Yi = X2i, 1 ≤ i ≤ 4176. With this notation, X =∑4176
i=1 Yi. Obviously, Yi, 1 ≤ i ≤ 4176, are independent random

variables with E(Yi) = E(X2) = 1/12 and V (Yi) = V (X2) =
47/144. Hence

P (290 ≤ X ≤ 377) = P

(
290−4176·1/12√

4176·47/144
≤ X−4176·1/12√

4176·47/144
≤ 377−4176·1/12√

4176·47/144

)
≈ P (−1.57 ≤ Z ≤ 0.78),

where Z is a standard normal variable. Therefore:

P (290 ≤ X ≤ 377) ≈ Φ(0.78)− Φ(−1.57)

= 0.7823− 0.0582 = 0.7241.

Thus, (iii) is true.

4. (a) Let us first find the distribution function FH of H. Clearly,

X ∼ U(0, 1) and H =
√
X2 + (1−X)2. Obviously,

√
2

2
≤ H ≤ 1.

Hence, FH(t) = 0 for t <
√

2
2

and FH(t) = 1 for t > 1. For

17



t ∈ [
√

2/2, 1] :

FH(t) = P (
√
X2 + (1−X)2 ≤ t)

= P (X2 + (1−X)2 ≤ t2)

= P

(
X2 −X +

1− t2

2
≤ 0

)

= P

(
1−
√

2t2 − 1

2
≤ X ≤ 1 +

√
2t2 − 1

2

)

= FX

(
1 +
√

2t2 − 1

2

)
− FX

(
1−
√

2t2 − 1

2

)

=
1 +
√

2t2 − 1

2
− 1−

√
2t2 − 1

2

=
√

2t2 − 1.

Therefore, the density function of H is

fH(t) = (FH(t))′ =


2t√

2t2−1
,

√
2

2
≤ t ≤ 1,

0, otherwise.

Thus, (i) is true.

(b) Since S4 = X(1−X)
2

and X ∼ U(0, 1), we have 0 ≤ S4 ≤ 1
8
. Hence,
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FS4(t) = 0 for t < 0 and FS4(t) = 1, for t > 1
8
. For t ∈ [0, 1/8]:

FS4(t) = P

(
X(1−X)

2
≤ t

)
= P

(
X2 −X + 2t ≥ 0

)
= P

(
X ≤ 1−

√
1− 8t

2

)
+ P

(
X ≥ 1 +

√
1− 8t

2

)

= FX

(
1−
√

1− 8t

2

)
+ 1− FX

(
1 +
√

1− 8t

2

)

=
1−
√

1− 8t

2
+ 1− 1 +

√
1− 8t

2

= 1−
√

1− 8t.

Thus, (iii) is true.

(c) First of all, it will be convenient to rewrite S4 in the following
form:

S4 =
X(1−X)

2

=
1

2
·

(
−
(
X − 1

2

)2

+
1

4

)

=
1

2
·
(
− (X − E(X))2 +

1

4

)
.

Thus:

E(S4) = E

(
1

2
·
(
− (X − E(X))2 +

1

4

))
=

1

2
·
(
−E

(
(X − E(X))2)+

1

4

)
=

1

2
·
(
−V (X) +

1

4

)
=

1

2
·
(
− 1

12
+

1

4

)
=

1

12
.
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Note that by part (b) we can also calculate E(S4) by the defini-
tion.

Thus, (iv) is true.

(d) One can easily see that

S� = H2 = X2 + (1−X)2 = 1− 4 · X(1−X)

2
= 1− 4S4,

which yields
ρ(S4, S�) = −1.

Thus, (i) is true.

(e) A linear approximation near 0 yields:

ψ(0.003) ≈ ψ(0) + ψ′(0) · 0.003

= 1 + E(S�) · 0.003

= 1 + (1− 4 · E(S4)) · 0.003

= 1 + (1− 4 · 1/12) · 0.003 = 1.002.

Thus, (iii) is true.
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