Midterm \#2

Mark all correct answers in each of the following questions.

1. We are given an infinite supply of light bulbs, whose life-length in hours is distributed $\operatorname{Exp}(\theta)$. We light the first bulb at time 0 , the second - an hour later, the third - an hour after the second, and so forth. Denote by T_{1} the first time at which some bulb burns out, and by T_{2} the second time this occurs.
(a) For any positive integer n and $t \in[n-1, n)$ we have:

$$
P\left(T_{1} \geq t\right)=e^{n(n-1) \theta-n \theta t}
$$

(b) The probability that the n-th bulb to be lit burns out before all the bulbs lit before it is $\frac{1}{n} e^{-n(n-1) \theta / 2}$.
(c) The probability that the 20-th bulb to be lit burns out before the 30 -th bulb to be lit is $e^{-10 \theta}$.
(d) For any positive integer n and $t \in[n-1, n)$, the expected number of bulbs which are on at time t is $\frac{e^{\theta n}-1}{e^{\theta}-1} e^{-\theta t}$.
(e) The random variables T_{1} and T_{2} are independent.
2. Reuven tosses a coin repeatedly until he gets heads for the first time. Shimon tosses a die repeatedly until he gets a " 6 " for the first time. Let X be the number of tosses of Reuven, Y - that of Shimon, and S - the total number of tosses. At the end of the game, Shimon pays Reuven $Z=Y-3 X$ shekels.
(a) $V(X)=4$.
(b) $V(Y)=30$.
(c) $P(Z=0)=25 / 432$.
(d) $\operatorname{Cov}(Z, S)=24$.
(e) $\rho(Z, S)=\sqrt{3 / 7}$.
3. (a) If X is Cauchy distributed, then $\operatorname{arctg} X$ does not have a variance.
(b) If X, Y are discrete random variables, then $X Y$ is discrete as well.
(c) If X, Y are continuous random variables, then $X Y$ is continuous as well.
(d) Let X be a discrete random variable, taking the values x_{1}, x_{2}, \ldots, with probabilities p_{1}, p_{2}, \ldots, respectively. Let Y be a discrete random variable, taking the values y_{1}, y_{2}, \ldots, with (the same) probabilities p_{1}, p_{2}, \ldots, respectively. If $y_{i} \geq x_{i}$ for each i, and $E(X)$ does not exist, then $E(Y)$ does not exist either.
(e) Let X, Y be random variables. If $E(X)=E(Y)=0$, then $E(X Y)$ may not exist. However, if it is known to exist, then it is 0 .

Solutions

1. (a) The probability for the first bulb to still operate at any time t is $e^{-\theta t}$, the probability for the second to still operate is $e^{-\theta(t-1)}$, and so forth. Hence:

$$
P\left(T_{1} \geq t\right)=e^{-\theta t} e^{-\theta(t-1)} \ldots e^{-\theta(t-n+1)}=e^{n(n-1) \theta / 2-n \theta t}
$$

(b) For the n-th bulb to burn out before all its predecessors, we first need all the bulbs $1,2, \ldots, n-1$ to still operate at time $n-1$, and then we need bulb n to burn out before all of them. By part (a), the first probability is $e^{-n(n-1) \theta / 2}$. If indeed none of the first $n-1$ bulbs burns out by time $n-1$, then, due to the memorylessness property of the exponential distribution and symmetry, the probability for the n-th bulb to burn out first is $1 / n$. It follows that the required probability is $\frac{1}{n} e^{-n(n-1) \theta / 2}$.
(c) The probability for the 20-th bulb to still operate at the time the 30 -th is lit is $e^{-10 \theta}$. If this is the case, then (again due to memorylessness and symmetry) the two bulbs have the same probability of burning out first. Thus the required probability is $\frac{1}{2} e^{-10 \theta}$.
(d) Clearly, the number X of bulbs which are on at time t may be written in the form $X=\sum_{i=1}^{n} X_{i}$, where $X_{i}=1$ if the i-th bulb to be lit is on at time t and $X_{i}=0$ otherwise. Clearly:

$$
E\left(X_{i}\right)=P\left(X_{i}=1\right)=e^{-(t-i+1) \theta}, \quad 1 \leq i \leq n .
$$

Consequently:

$$
E(X)=e^{-\theta t}\left(1+e^{\theta}+e^{2 \theta}+\ldots+e^{(n-1) \theta}\right)=\frac{e^{\theta n}-1}{e^{\theta}-1} e^{-\theta t}
$$

(e) Obviously, the probabilities $P\left(T_{1}>3\right)$ and $P\left(T_{2}<2\right)$ are both positive, yet $P\left(T_{1}>3, T_{2}<2\right)=0$. Hence T_{1} and T_{2} are dependent.

Thus, (b) and (d) are true.
2. (a) Clearly, $X \sim G(1 / 2)$, and therefore $E(X)=1 /(1 / 2)=2$ and $V(X)=(1-1 / 2) /(1 / 2)^{2}=2$.
(b) $Y \sim G(1 / 6)$, and therefore $E(Y)=6$ and $V(Y)=30$.
(c) The event $\{Z=0\}$ occurs if, for some positive integer n, we have both $X=n$ and $Y=3 n$. Therefore:

$$
\begin{aligned}
P(Z=0) & =\sum_{n=1}^{\infty}\left(\frac{1}{2}\right)^{n} \cdot\left(\frac{5}{6}\right)^{3 n-1} \cdot \frac{1}{6} \\
& =\frac{1}{5} \sum_{n=1}^{\infty}\left(\frac{1}{2} \cdot \frac{125}{216}\right)^{n} \\
& =\frac{25}{432} \cdot \frac{1}{1-125 / 432}=\frac{25}{307} .
\end{aligned}
$$

(d)

$$
\begin{aligned}
\operatorname{Cov}(Z, S)= & E(Z S)-E(Z) E(S) \\
= & E((Y-3 X)(X+Y)) \\
& -(E(Y)-3 E(X)) \cdot(E(X)+E(Y)) \\
= & E\left(Y^{2}-2 X Y-3 X^{2}\right)-0 \\
= & V(Y)+E^{2}(Y)-2 E(X) E(Y) \\
& -3 V(X)-3 E^{2}(X) \\
= & 30+6^{2}-2 \cdot 2 \cdot 6-6-12=24
\end{aligned}
$$

(e) We have

$$
V(Z)=V(Y-3 X)=V(Y)+9 V(X)=48
$$

and

$$
V(S)=V(X+Y)=V(X)+V(Y)=32
$$

and therefore $\rho(Z, S)=\operatorname{Cov}(Z, S) / \sqrt{V(Z) V(S)}=24 / \sqrt{48 \cdot 32}=$ $\sqrt{3 / 8}$.
Thus, (b) and (d) are true.
3. (a) For any X, the variable $\operatorname{arctg} X$ is bounded, and therefore $E(X)$ and $V(X)$ exist. In the particular case where X is Cauchy distributed, the definition yields $\operatorname{arctg} X \sim U(-\pi / 2, \pi / 2)$, and consequently $V(\operatorname{arctg} X)=\pi^{2} / 12$.
(b) Let X, Y be discrete random variables. Suppose they assume (with positive probability) the values $\left\{x_{i}: i \in I\right\}$ and $\left\{y_{j}: j \in J\right\}$, respectively, where I, J are at most countable index sets. Then $X Y$ assumes only values belonging to the countable set $\left\{x_{i} y_{j}: i \in\right.$ $I, j \in J\}$ (perhaps not all these values), and thus it is discrete as well.
(c) Let X be a continuous random variables. Then $Y=1 / X$ is continuous as well, but the product $X Y$ is identically 1 , and in particular discrete.
(d) Let X be a discrete random variable, assuming negative values only, so that $E(X)$ does not exist. (For example, $X=-X^{\prime}$, where X^{\prime} is the random variable discussed in the St. Petersburg game.) Let Y be a discrete random variable, assuming positive values only with corresponding probabilities, such that $E(Y)$ does exist (say, $Y \sim G(1 / 2))$. Then the required condition holds, but the desired conclusion does not.
(e) Let X be distributed according to the probability function given by

$$
P(X=n)=c /|n|^{3}, \quad n= \pm 1, \pm 2, \ldots
$$

where c is a suitable constant. Then:

$$
E(X)=\sum_{n=-\infty}^{-1} \frac{-c}{n^{3}} \cdot n+\sum_{n=1}^{\infty} \frac{c}{n^{3}} \cdot n=0
$$

Now let $Y=X$. We have

$$
E(X Y)=E\left(X^{2}\right)=\sum_{n=-\infty}^{-1} \frac{-c}{n^{3}} \cdot n^{2}+\sum_{n=1}^{\infty} \frac{c}{n^{3}} \cdot n^{2}
$$

which diverges. On the other hand, letting $X= \pm 1$ with probabilities $1 / 2$ each, and $Y=X$, we obtain $E(X)=E(Y)=0$, but $E(X Y)=E\left(X^{2}\right)=1$.
Thus, only (b) is true.

