
Midterm #2

Mark all correct answers in each of the following questions.

1. We are given an infinite supply of light bulbs, whose life-length in hours
is distributed Exp(θ). We light the first bulb at time 0, the second – an
hour later, the third – an hour after the second, and so forth. Denote
by T1 the first time at which some bulb burns out, and by T2 the second
time this occurs.

(a) For any positive integer n and t ∈ [n− 1, n) we have:

P (T1 ≥ t) = en(n−1)θ−nθt .

(b) The probability that the n-th bulb to be lit burns out before all
the bulbs lit before it is 1

n
e−n(n−1)θ/2.

(c) The probability that the 20-th bulb to be lit burns out before the
30-th bulb to be lit is e−10θ.

(d) For any positive integer n and t ∈ [n− 1, n), the expected number

of bulbs which are on at time t is eθn−1
eθ−1

e−θt.

(e) The random variables T1 and T2 are independent.

2. Reuven tosses a coin repeatedly until he gets heads for the first time.
Shimon tosses a die repeatedly until he gets a “6” for the first time.
Let X be the number of tosses of Reuven, Y – that of Shimon, and
S – the total number of tosses. At the end of the game, Shimon pays
Reuven Z = Y − 3X shekels.

(a) V (X) = 4.
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(b) V (Y ) = 30.

(c) P (Z = 0) = 25/432.

(d) Cov(Z, S) = 24.

(e) ρ(Z, S) =
√

3/7.

3. (a) If X is Cauchy distributed, then arctgX does not have a variance.

(b) If X,Y are discrete random variables, then XY is discrete as well.

(c) If X,Y are continuous random variables, then XY is continuous
as well.

(d) Let X be a discrete random variable, taking the values x1, x2, . . . ,
with probabilities p1, p2, . . . , respectively. Let Y be a discrete ran-
dom variable, taking the values y1, y2, . . . , with (the same) prob-
abilities p1, p2, . . . , respectively. If yi ≥ xi for each i, and E(X)
does not exist, then E(Y ) does not exist either.

(e) Let X, Y be random variables. If E(X) = E(Y ) = 0, then E(XY )
may not exist. However, if it is known to exist, then it is 0.

Solutions

1. (a) The probability for the first bulb to still operate at any time t is
e−θt, the probability for the second to still operate is e−θ(t−1), and
so forth. Hence:

P (T1 ≥ t) = e−θte−θ(t−1) . . . e−θ(t−n+1) = en(n−1)θ/2−nθt .

(b) For the n-th bulb to burn out before all its predecessors, we first
need all the bulbs 1, 2, . . . , n−1 to still operate at time n−1, and
then we need bulb n to burn out before all of them. By part (a),
the first probability is e−n(n−1)θ/2. If indeed none of the first n− 1
bulbs burns out by time n − 1, then, due to the memorylessness
property of the exponential distribution and symmetry, the prob-
ability for the n-th bulb to burn out first is 1/n. It follows that
the required probability is 1

n
e−n(n−1)θ/2.
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(c) The probability for the 20-th bulb to still operate at the time the
30-th is lit is e−10θ. If this is the case, then (again due to memory-
lessness and symmetry) the two bulbs have the same probability
of burning out first. Thus the required probability is 1

2
e−10θ.

(d) Clearly, the number X of bulbs which are on at time t may be
written in the form X =

∑n
i=1 Xi, where Xi = 1 if the i-th bulb

to be lit is on at time t and Xi = 0 otherwise. Clearly:

E(Xi) = P (Xi = 1) = e−(t−i+1)θ, 1 ≤ i ≤ n.

Consequently:

E(X) = e−θt
(
1 + eθ + e2θ + . . .+ e(n−1)θ

)
=
eθn − 1

eθ − 1
e−θt.

(e) Obviously, the probabilities P (T1 > 3) and P (T2 < 2) are both
positive, yet P (T1 > 3, T2 < 2) = 0. Hence T1 and T2 are depen-
dent.

Thus, (b) and (d) are true.

2. (a) Clearly, X ∼ G(1/2), and therefore E(X) = 1/(1/2) = 2 and
V (X) = (1− 1/2)/(1/2)2 = 2.

(b) Y ∼ G(1/6), and therefore E(Y ) = 6 and V (Y ) = 30.

(c) The event {Z = 0} occurs if, for some positive integer n, we have
both X = n and Y = 3n. Therefore:

P (Z = 0) =
∞∑
n=1

(
1

2

)n
·
(

5

6

)3n−1

· 1

6

=
1

5

∞∑
n=1

(
1

2
· 125

216

)n
=

25

432
· 1

1− 125/432
=

25

307
.
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(d)

Cov(Z, S) = E(ZS)− E(Z)E(S)

= E((Y − 3X)(X + Y ))

−(E(Y )− 3E(X)) · (E(X) + E(Y ))

= E(Y 2 − 2XY − 3X2)− 0

= V (Y ) + E2(Y )− 2E(X)E(Y )

−3V (X)− 3E2(X)

= 30 + 62 − 2 · 2 · 6− 6− 12 = 24.

(e) We have

V (Z) = V (Y − 3X) = V (Y ) + 9V (X) = 48,

and
V (S) = V (X + Y ) = V (X) + V (Y ) = 32,

and therefore ρ(Z, S) = Cov(Z, S)/
√
V (Z)V (S) = 24/

√
48 · 32 =√

3/8.

Thus, (b) and (d) are true.

3. (a) For any X, the variable arctgX is bounded, and therefore E(X)
and V (X) exist. In the particular case where X is Cauchy dis-
tributed, the definition yields arctgX ∼ U(−π/2, π/2), and con-
sequently V ( arctgX) = π2/12.

(b) Let X, Y be discrete random variables. Suppose they assume (with
positive probability) the values {xi : i ∈ I} and {yj : j ∈ J},
respectively, where I, J are at most countable index sets. Then
XY assumes only values belonging to the countable set {xiyj : i ∈
I, j ∈ J} (perhaps not all these values), and thus it is discrete as
well.

(c) Let X be a continuous random variables. Then Y = 1/X is
continuous as well, but the product XY is identically 1, and in
particular discrete.
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(d) Let X be a discrete random variable, assuming negative values
only, so that E(X) does not exist. (For example, X = −X ′,
where X ′ is the random variable discussed in the St. Petersburg
game.) Let Y be a discrete random variable, assuming positive
values only with corresponding probabilities, such that E(Y ) does
exist (say, Y ∼ G(1/2)). Then the required condition holds, but
the desired conclusion does not.

(e) Let X be distributed according to the probability function given
by

P (X = n) = c/|n|3, n = ±1,±2, . . . ,

where c is a suitable constant. Then:

E(X) =
−1∑

n=−∞

−c
n3
· n+

∞∑
n=1

c

n3
· n = 0.

Now let Y = X. We have

E(XY ) = E(X2) =
−1∑

n=−∞

−c
n3
· n2 +

∞∑
n=1

c

n3
· n2,

which diverges. On the other hand, letting X = ±1 with proba-
bilities 1/2 each, and Y = X, we obtain E(X) = E(Y ) = 0, but
E(XY ) = E(X2) = 1.

Thus, only (b) is true.
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