Midterm #2

Mark all correct answers in each of the following questions.

- 1. We are given an infinite supply of light bulbs, whose life-length in hours is distributed $\text{Exp}(\theta)$. We light the first bulb at time 0, the second – an hour later, the third – an hour after the second, and so forth. Denote by T_1 the first time at which some bulb burns out, and by T_2 the second time this occurs.
 - (a) For any positive integer n and $t \in [n-1, n)$ we have:

$$P(T_1 \ge t) = e^{n(n-1)\theta - n\theta t}$$

- (b) The probability that the *n*-th bulb to be lit burns out before all the bulbs lit before it is $\frac{1}{n}e^{-n(n-1)\theta/2}$.
- (c) The probability that the 20-th bulb to be lit burns out before the 30-th bulb to be lit is $e^{-10\theta}$.
- (d) For any positive integer n and $t \in [n-1, n)$, the expected number of bulbs which are on at time t is $\frac{e^{\theta n}-1}{e^{\theta}-1}e^{-\theta t}$.
- (e) The random variables T_1 and T_2 are independent.
- 2. Reuven tosses a coin repeatedly until he gets heads for the first time. Shimon tosses a die repeatedly until he gets a "6" for the first time. Let X be the number of tosses of Reuven, Y – that of Shimon, and S – the total number of tosses. At the end of the game, Shimon pays Reuven Z = Y - 3X shekels.

(a)
$$V(X) = 4$$
.

- (b) V(Y) = 30.(c) P(Z = 0) = 25/432.(d) Cov(Z, S) = 24.(e) $\rho(Z, S) = \sqrt{3/7}.$
- 3. (a) If X is Cauchy distributed, then $\operatorname{arctg} X$ does not have a variance.
 - (b) If X, Y are discrete random variables, then XY is discrete as well.
 - (c) If X, Y are continuous random variables, then XY is continuous as well.
 - (d) Let X be a discrete random variable, taking the values x_1, x_2, \ldots , with probabilities p_1, p_2, \ldots , respectively. Let Y be a discrete random variable, taking the values y_1, y_2, \ldots , with (the same) probabilities p_1, p_2, \ldots , respectively. If $y_i \ge x_i$ for each i, and E(X)does not exist, then E(Y) does not exist either.
 - (e) Let X, Y be random variables. If E(X) = E(Y) = 0, then E(XY) may not exist. However, if it is known to exist, then it is 0.

Solutions

1. (a) The probability for the first bulb to still operate at any time t is $e^{-\theta t}$, the probability for the second to still operate is $e^{-\theta(t-1)}$, and so forth. Hence:

$$P(T_1 \ge t) = e^{-\theta t} e^{-\theta (t-1)} \dots e^{-\theta (t-n+1)} = e^{n(n-1)\theta/2 - n\theta t}$$

(b) For the *n*-th bulb to burn out before all its predecessors, we first need all the bulbs 1, 2, ..., n-1 to still operate at time n-1, and then we need bulb *n* to burn out before all of them. By part (a), the first probability is $e^{-n(n-1)\theta/2}$. If indeed none of the first n-1 bulbs burns out by time n-1, then, due to the memorylessness property of the exponential distribution and symmetry, the probability for the *n*-th bulb to burn out first is 1/n. It follows that the required probability is $\frac{1}{n}e^{-n(n-1)\theta/2}$.

- (c) The probability for the 20-th bulb to still operate at the time the 30-th is lit is $e^{-10\theta}$. If this is the case, then (again due to memory-lessness and symmetry) the two bulbs have the same probability of burning out first. Thus the required probability is $\frac{1}{2}e^{-10\theta}$.
- (d) Clearly, the number X of bulbs which are on at time t may be written in the form $X = \sum_{i=1}^{n} X_i$, where $X_i = 1$ if the *i*-th bulb to be lit is on at time t and $X_i = 0$ otherwise. Clearly:

$$E(X_i) = P(X_i = 1) = e^{-(t-i+1)\theta}, \quad 1 \le i \le n.$$

Consequently:

$$E(X) = e^{-\theta t} \left(1 + e^{\theta} + e^{2\theta} + \dots + e^{(n-1)\theta} \right) = \frac{e^{\theta n} - 1}{e^{\theta} - 1} e^{-\theta t}$$

(e) Obviously, the probabilities $P(T_1 > 3)$ and $P(T_2 < 2)$ are both positive, yet $P(T_1 > 3, T_2 < 2) = 0$. Hence T_1 and T_2 are dependent.

Thus, (b) and (d) are true.

- 2. (a) Clearly, $X \sim G(1/2)$, and therefore E(X) = 1/(1/2) = 2 and $V(X) = (1 1/2)/(1/2)^2 = 2$.
 - (b) $Y \sim G(1/6)$, and therefore E(Y) = 6 and V(Y) = 30.
 - (c) The event $\{Z = 0\}$ occurs if, for some positive integer n, we have both X = n and Y = 3n. Therefore:

$$P(Z = 0) = \sum_{n=1}^{\infty} \left(\frac{1}{2}\right)^n \cdot \left(\frac{5}{6}\right)^{3n-1} \cdot \frac{1}{6}$$
$$= \frac{1}{5} \sum_{n=1}^{\infty} \left(\frac{1}{2} \cdot \frac{125}{216}\right)^n$$
$$= \frac{25}{432} \cdot \frac{1}{1 - 125/432} = \frac{25}{307}.$$

(d)

$$Cov(Z, S) = E(ZS) - E(Z)E(S)$$

= $E((Y - 3X)(X + Y))$
 $-(E(Y) - 3E(X)) \cdot (E(X) + E(Y))$
= $E(Y^2 - 2XY - 3X^2) - 0$
= $V(Y) + E^2(Y) - 2E(X)E(Y)$
 $-3V(X) - 3E^2(X)$
= $30 + 6^2 - 2 \cdot 2 \cdot 6 - 6 - 12 = 24.$

(e) We have

$$V(Z) = V(Y - 3X) = V(Y) + 9V(X) = 48,$$

and

$$V(S) = V(X + Y) = V(X) + V(Y) = 32,$$

nerefore $\rho(Z, S) = \text{Cov}(Z, S) / \sqrt{V(Z)V(S)} = 24 / \sqrt{48 \cdot 32}$

_

and therefore $\rho(Z, S) = \operatorname{Cov}(Z, S) / \sqrt{V(Z)V(S)} = 24/\sqrt{48 \cdot 32} \sqrt{3/8}$.

Thus, (b) and (d) are true.

- (a) For any X, the variable arctg X is bounded, and therefore E(X) and V(X) exist. In the particular case where X is Cauchy distributed, the definition yields arctg X ~ U(-π/2, π/2), and consequently V(arctg X) = π²/12.
 - (b) Let X, Y be discrete random variables. Suppose they assume (with positive probability) the values $\{x_i : i \in I\}$ and $\{y_j : j \in J\}$, respectively, where I, J are at most countable index sets. Then XY assumes only values belonging to the countable set $\{x_iy_j : i \in I, j \in J\}$ (perhaps not all these values), and thus it is discrete as well.
 - (c) Let X be a continuous random variables. Then Y = 1/X is continuous as well, but the product XY is identically 1, and in particular discrete.

- (d) Let X be a discrete random variable, assuming negative values only, so that E(X) does not exist. (For example, X = -X', where X' is the random variable discussed in the St. Petersburg game.) Let Y be a discrete random variable, assuming positive values only with corresponding probabilities, such that E(Y) does exist (say, $Y \sim G(1/2)$). Then the required condition holds, but the desired conclusion does not.
- (e) Let X be distributed according to the probability function given by

$$P(X = n) = c/|n|^3, \qquad n = \pm 1, \pm 2, \dots,$$

where c is a suitable constant. Then:

$$E(X) = \sum_{n=-\infty}^{-1} \frac{-c}{n^3} \cdot n + \sum_{n=1}^{\infty} \frac{c}{n^3} \cdot n = 0.$$

Now let Y = X. We have

$$E(XY) = E(X^{2}) = \sum_{n=-\infty}^{-1} \frac{-c}{n^{3}} \cdot n^{2} + \sum_{n=1}^{\infty} \frac{c}{n^{3}} \cdot n^{2},$$

which diverges. On the other hand, letting $X = \pm 1$ with probabilities 1/2 each, and Y = X, we obtain E(X) = E(Y) = 0, but $E(XY) = E(X^2) = 1$.

Thus, only (b) is true.