
Final #2

Mark all correct answers in each of the following questions.

1. In an urn there are k balls, labelled by the numbers 1, 2, . . . , k, where
k ≥ 2. We draw the balls from the urn with replacement until each
ball has been drawn at least once. Define random variables as follows:

• X – the number of stages of the experiment.

• Y – the number of times the ball drawn at the first stage is drawn
altogether.

• Nj (for 1 ≤ j ≤ k) – the number of stages that elapsed from the
stage in which for the (j− 1)-st time the ball to be drawn has not
been drawn earlier until the j-th time this happened. (Thus, we
agree that N1 = 1.)

(For example, if k = 3 and the balls drawn were 2, 2, 2, 3, 2, 2, 3, 3, 2, 1,
then X = 10, Y = 6, N1 = 1, N2 = 3, N3 = 6.)

(a) E(X) = k
(
1 + 1

2
+ . . .+ 1

k

)
.

(b) Nj is hypergeometrically distributed for 2 ≤ j ≤ k.

(c) E(Y ) = 1 + 1
2

+ . . .+ 1
k−1 .

(d) The random variables X, Y are independent.

(e) P (Y = 1 |X = k + 1) = 1
2
− 1

k
for k ≥ 2.

2. We toss n dice. Those who show a “6” are tossed a second time. Let X
be the number of dice showing “6” at the first stage, Y the number of
dice showing “6” at the second stage, and S the sum of results at the
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second stage. (For example, if n = 7 and the results at the first stage
are 2, 2, 5, 6, 1, 6, 6, then X = 3, and dice 4, 6 and 7 are tossed again. If
the results at the second stage are 6, 4, 6, then Y = 2 and S = 16.)

(a) The 3-dimensional random variable (X, Y, n−X−Y ) is distributed
trinomially (i.e., multinomially in the 3-dimensional case).

(b) P (X = n |Y = 0) = 1
6n

.

(c) Markov’s inequality implies:

P (S ≥ n) ≤ 7

12
.

(d) Suppose that n = 2 and we repeat the experiment 1296 times.
Let S1, S2, . . . , S1296 be the values of S at the various stages. The
probability that there exist exactly 2 indices i, for which Si = 11,
is approximately e−2.

(e) Under the assumptions of the preceding part:

P

(
1296∑
i=1

Si ≤ 1512

)
≈ 0.84 .

3. An urn contains 3 white balls and 2 black balls. All balls are drawn
from the urn one by one without replacement. For k = 1, 2 . . . , 5,
let Xk denote the difference between the number of white balls and
the number of black balls drawn throughout the first k steps. Put
Y = min1≤k≤5Xk. (For example, if the first ball to be drawn is white,
the following two are black, and the last two are white, then X1 =
1, X2 = 0, X3 = −1, X4 = 0, X5 = 1, Y = −1.)

(a) P (X1 = −1 |Y = −1) = 1
2
.

(b) Suppose we repeat the experiment 300 times. Let N300 denote the
number of times Y assumes the value −2. Chebyshev’s inequality
implies:

P (N300 > 35) ≤ 3

4
.
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(c) Suppose we repeat the experiment 10000 times, and let N10000 be
defined analogously to N300 of the preceding part. Then:

P (900 ≤ N10000 ≤ 970) ≈ 0.16.

(d) Suppose we repeat the experiment indefinitely. Let Y1, Y2, . . . be
the random variables corresponding to Y in the various exper-
iments. For every ε > 0 there exist constants L = L(ε) and
N = N(ε) such that for every n > N we have:

P

(∣∣∣∣∣
n∑

i=1

Yi +
2n

5

∣∣∣∣∣ ≥ L

)
≤ ε.

(e) Consider again the original experiment, but with 39 white balls
and 20 black balls. Define Xk, 1 ≤ k ≤ 58 and Y analogously to
the original definitions. Then:

P (Y = 0) =
1

2
.

4. The variable (X, Y ) is uniformly distributed in the triangle with ver-
tices (0, 0), (1, 0), (1,−1).

(a) The variable (X2, Y 2) is distributed uniformly in the region {(x, y) :
0 ≤ x ≤ 1, 0 ≤ y ≤ x2}.

(b) Y ∼ U(−1, 0).

(c) The random variable X has the same distribution as the variable
min(U1, U2), where U1, U2 are independent U(0, 1)-distributed ran-
dom variables.

(d) ρ(X, Y ) < 0. Moreover, in every situation where (as in our case) X
assumes only non-negative values and Y only non-positive values,
the correlation coefficient ρ(X, Y ), if it exists, is non-positive.

(e) Let W = X3. The two events {X ≥ 3/4} and {W ≥ 27/64} coin-
cide, and in particular P (X ≥ 3/4) = P (W ≥ 27/64). However,
if we use Markov’s inequality to bound these two probabilities, we
obtain distinct bounds.
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5. In a certain bank branch there are k tellers. The time in minutes a teller
spends with a random customer is distributed Exp(1). On a certain
day, when the branch was closed, there were still k+m customers inside,
k of whom were being served by the tellers, and the other m waiting
(in a common queue) for their turn. When one of the tellers finishes
serving a customer, the next customer in line (if there is still one) turns
to him for service. Let Xi, 1 ≤ i ≤ k, denote the number of customers
out of the latter m to be served by teller i. (Thus,

∑k
i=1Xi = m.)

(a) The time until all customers will finish is distributed as a sum
of k + m independent random variables, one of which is Exp(1)-
distributed, one is Exp(2)-distributed, one is Exp(3)-distributed,
..., one is Exp(k − 1)-distributed, and all the other m + 1 are
Exp(k)-distributed.

(b) If m ≥ k, then

P (X1 > 0, . . . , Xk > 0) = k

(
1− 1

k

)m

−
(
k

2

)(
1− 2

k

)m

+

(
k

3

)(
1− 3

k

)m

− . . .

+ (−1)k−2
(

k

k − 1

)(
1− k − 1

k

)m

.

(c) For m = k:

P (X1 > 0, . . . , Xk > 0) =
k!

kk
.

(d) (X1, X2, . . . , Xm) is multinomially distributed.

(e) Denote by Tn the time until all customers finish, if there are n
customers at the branch when it closes. (For example, the time
considered in part (a) is Tm+k.) There exists a constant C such
that E(Tn) = Cn for each n ≥ k.

6. (a) If (X1, X2, . . . , X9) is multinomially distributed, then X3+X6+X9

is binomially distributed.

(b) If X, Y ∼ Exp(θ) are independent, then |X − Y | ∼ Exp(2θ).
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(c) If X, Y are independent normal variables and P (X > Y ) = 1/2,
then E(X) = E(Y ) and V (X) = V (Y ).

(d) Let (Xn)∞n=1 be a sequence of random variables with expectations,
satisfying the weak law of large numbers. Then for every sequence
(an)∞n=1 of real numbers, which grows sufficiently fast, the sequence
(Xn + an)∞n=1 does not satisfy the weak law of large numbers.

(e) Let X be a random variable with moment generating function
ψX(t) = e50t

2+t. Then P (X > 1) = 1/2.

Solutions

1. (a-b) Nj counts the number of times we draw a ball until a new one
emerges. Since we are at a position where j−1 balls have already
been drawn and k − j + 1 are yet to be drawn, the probability of
success is k−j+1

k
. Hence Nj ∼ G

(
k−j+1

k

)
. Now X =

∑k
j=1Nj, and

therefore:

E(X) =
k∑

j=1

E(Nj)

= 1 +
k∑

j=2

k

k − j + 1

= k

(
1 +

1

2
+ . . .+

1

k

)
.

(c) Let us write Y =
∑k

j=1 Yj, where Yj is the number of times the first
drawn ball is drawn between the (j−1)-st time a new ball is drawn
and the j-th time this happens. In the course of these drawings,
all drawings are of the j − 1 balls already drawn, except for the
last which is a new ball. Due to symmetry we have therefore:

E(Yj) = E

(
Nj − 1

j − 1

)
=

1

k − j + 1
.

(Alternatively, we may obtain this equality as follows. Consider
the drawings between the (j − 1)-st time a new ball is drawn and
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the j-th time this happens. We may ignore drawings of old balls
in this interval, except for drawings of the first drawn ball. Then,
at each drawing, the probability for the first ball is 1

k−j+2
and for

a new ball k−j+1
k−j+2

. Hence Yj = Y ′j − 1, where Y ′j ∼ G
(

k−j+1
k−j+2

)
.

Thus,

E(Yj) =
k − j + 2

k − j + 1
− 1 =

1

k − j + 1

as before.) It follows that:

E(Y ) = 1 +
k∑

j=2

1

k − j + 1
= 2 +

1

2
+ . . .+

1

k − 1
.

(d) Obviously, X may assume (with a positive probability) every inte-
ger value from k and above. Y may assume every positive integer
value. However, for example, P (X = k, Y = 2) = 0. Hence X, Y
are dependent.

(e) We have:

P (Y = 1 |X = k + 1) =
P (X = k + 1, Y = 1)

P (X = k + 1)
.

The event {X = k + 1} occurs if all drawings but one are of new
balls. Partitioning this event according to the step j between 2
and k at which we draw an already drawn ball, we obtain:

P (X = k + 1) =
k∑

j=2

k − 1

k
· k − 2

k
· . . . · k − j + 1

k

· j − 1

k
· k − j

k
· k − j − 1

k
· . . . · 1

k

=
k!

kk+1
· k(k − 1)

2
=

(k − 1)k!

2kk
.
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Similarly:

P (X = k + 1, Y = 1) =
k∑

j=2

k − 1

k
· k − 2

k
· . . . · k − j + 1

k

· j − 2

k
· k − j

k
· k − j − 1

k
· . . . · 1

k

=
k!

kk+1
· (k − 2)(k − 1)

2
.

Finally:

P (Y = 1 |X = k + 1) =
k − 2

k
.

Thus, only (a) is true.

2. (a) If a multi-dimensional random variable (T1, T2, . . . , Tk) is distributed
multinomially, then in particular each of the components Ti as-
sumes only non-negative values. In our case, n − X − Y may
assume negative values (for example, if all dice show a “6” on
both tosses).

(b) We have:

P (X = n |Y = 0) =
P (X = n, Y = 0)

P (Y = 0)
.

The event {X = n, Y = 0} occurs if all dice show a “6” on the
first toss, but none does so on the second. Thus:

P (X = n, Y = 0) =

(
1

6

)n

·
(

5

6

)n

=

(
5

36

)n

.

To calculate P (Y = 0), we may assume that all dice are tossed
twice, and the question is about the probability that none of the
dice shows a “6” on both tosses. Hence:

P (Y = 0) =

(
35

36

)n

.

It follows that:

P (X = n |Y = 0) =
(5/36)n

(35/36)n
=

1

7n
.
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(c) Denote by Ri, 1 ≤ i ≤ n, the contribution of the i-th die to S.
Clearly, P (Ri = 0) = 5/6, and P (Ri = k) = 1/36 for k =
1, 2, . . . , 6. Then:

E(Ri) = 0 · 5

6
+ 1 · 1

36
+ . . .+ 6 · 1

36
=

7

12
.

Since S =
∑n

i=1Ri, this gives E(S) = 7n/12. Markov’s inequality
implies therefore:

P (S ≥ n) ≤ 7n/12

n
=

7

12
.

(d) To have Si = 11 for some specific i, both dice need to show
a “6” at stage 1 of the i-th experiment, and then one needs to
show a “6” and the other a “5” at stage 2. Hence P (Si = 11) =
2/64. It follows that the number of indices i satisfying Si = 11
is distributed B(1296, 2/64), which is approximately P (2). Hence
the probability in question is approximately

22

2!
· e−2 = 2e−2 .

(e) By part (c):

E(Si) = 2 · 7

12
=

7

6
, 1 ≤ i ≤ 1296.

Denote V (S) by σ2. The normal approximation yields:

P

(
1296∑
i=1

Si ≤ 1512

)
= P

(
S̄1296 ≤

7

6

)
= P

(
S̄1296 − 7/6

36σ
≤ 0

)
≈ P (Z ≤ 0),

where Z ∼ N(0, 1). Hence the required probability is approxi-
mately 1/2.

Thus, only (c) is true.
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3. (a) We have:

P (X1 = −1 |Y = −1) =
P (X1 = −1, Y = −1)

P (Y = −1)
.

There are
(
5
2

)
possibilities as to the locations of the black balls

among the drawn balls. Out of these, 4 constitute the event in
the denominator of the right-hand side, and only 3 constitute the
event in the numerator. Therefore:

P (X1 = −1 |Y = −1) =
3/10

4/1
=

3

4
.

(b) The event {Y = −2} occurs when the first two drawings are of
the black balls, and only then are the white balls drawn. Hence
P (Y = −2) = 1/10. Thus, N300 ∼ B(300, 1/10), so that

E(N300) = 300 · 1/10 = 30

and
V (N300) = 300 · 1/10 · 9/10 = 27.

By Chebyshev’s inequality:

P (N300 > 35) = P (N300 ≥ 36)

≤ P (|N300 − 30| ≥ 6)

≤ 27

62
=

3

4
.

(c) We have N10000 ∼ B(10000, 1/10), so that by the normal approxi-
mation:

P (900 ≤ N10000 ≤ 970) = P

(
−10

3
≤ N10000 − 10000 · 1/10√

10000 · 1/10 · 9/10
≤ −1

)

= P

(
−10

3
≤ Z ≤ −1

)
,

where Z ∼ N(0, 1). Hence:

P (900 ≤ N10000 ≤ 970) ≈ Φ(−1)− Φ(−10/3) = 0.16.
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(d) A routine calculation shows that the probability function of Y is
given by the following table:

y −2 −1 0 1

p 1
10

4
10

3
10

2
10

Hence

E(Y ) = −2 · 1

10
− 1 · 4

10
+ 0 · 3

10
+ 1 · 2

10
= −2

5

and

E
(
Y 2
)

= (−2)2 · 1

10
+ (−1)2 · 4

10
+ 02 · 3

10
+ 12 · 2

10
= 1,

so that V (Y ) = 21/25. Hence (and since V (Y ) is certainly fi-
nite), the sequence (Yn)∞n=1 satisfies the weak law of large numbers,
namely

P

(∣∣∣∣Ȳn +
2

5

∣∣∣∣ ≥ δ

)
−→
n→∞

0, δ > 0.

Namely:

P

(∣∣∣∣∣
n∑

i=1

Yi +
2n

5

∣∣∣∣∣ ≥ δn

)
−→
n→∞

0, δ > 0.

Thus, the convergence claimed in the question is much faster than
that guaranteed by the law of large numbers. In fact, this faster
convergence does not hold, as from the Central Limit Theorem we
obtain:

P

(∣∣∣∣Ȳn +
2

5

∣∣∣∣ < L

n

)
= P

(∣∣∣∣∣Yn − (−2/5)√
21/25/

√
n

∣∣∣∣∣ < 5L√
21n

)
−→
n→∞

P (Z = 0),

where Z ∼ N(0, 1). Hence the probability in question converges
to 1 as n→∞.

10



(e) This part is very similar to the ballot problem, with 39 votes for
the first candidate and 20 for the second. The event {Y = 0} in
the question corresponds to the event that the second candidate
never leads, but at some point during the process there is a tie.
Now the event {Y ≥ 0} corresponds to the event that the second
candidate never leads, so that by the solution of the ballot problem

P (Y ≥ 0) =
39− 20 + 1

39 + 1
=

1

2
.

Clearly, P (Y > 0) > 0, and therefore P (Y = 0) < 1/2.

Thus, (b) and (c) are true.

4. We first note that, since the area of the triangle with vertices (0, 0), (1, 0),
and (1,−1) is 1/2, we have

P ((X, Y ) ∈ D) = 2 · area(D)

for every subset D of that triangle.

(a) If (X2, Y 2) was distributed uniformly in {(x, y) : 0 ≤ x ≤ 1, 0 ≤
y ≤ x2}, then we would have in particular

P
(
Y 2 > (X2)2

)
= 0.

However:

P
(
Y 2 > (X2)2

)
= P (Y < −X2) = 2

∫ 1

0

(−x2 + x)dx = 1/3.

(b) We have:

P (Y > y) = 2 ·
(

1

2
− (1 + y)2

2

)
= 1− (1 + y)2, −1 ≤ y ≤ 0.

Hence in the “interesting” interval [−1, 0]

FY (y) = (1 + y)2, fY (y) = 2(1 + y),

and in particular Y is not uniformly distributed in (−1, 0).
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(c) Let us first find the distribution of X:

FX(x) = P (X ≤ x) = 2 · x
2

2
= x2, 0 ≤ x ≤ 1.

Now let U = min(U1, U2), where U1, U2 are independent U(0, 1)-
distributed. Then for 0 ≤ u ≤ 1:

FU(u) = P (U ≤ u) = 1− P (U > u)

= 1− P (U1 > u,U2 > u) = 1− (1− u)2 = 2u− u2.

(d) Routine calculations yield:

E(X) = 2
3
, V (X) = 1

18
,

E(Y ) = −1
3
, V (Y ) = 1

18
,

and

E(XY ) = −1

4
,

so that:

Cov(X, Y ) = − 1

36
.

Hence:

ρ(X, Y ) =
−1/36

1/18
= −1

2
.

(The fact that ρ(X, Y ) < 0 is intuitively clear if we notice that Y
assumes values between −X and 0. Thus, as X grows from 0 to
1, the values Y assumes tend to be smaller and smaller.)

However, the situation described later in the question is irrelevant
to the value of ρ(X, Y ), as it does not relate changes in one of the
variables to changes in the second. For example, let U ∼ U(0, 1)
and X = U, Y = U−1. Then X assumes only non-negative values
and Y only non-positive values, yet ρ(X, Y ) = 1.

(e) Since the mapping x 7→ x3 is one-to-one, the events {X ≥ 3/4} and
{W ≥ 27/64} indeed coincide. For the first, Markov’s inequality
yields:

P (X ≥ 3/4) ≤ E(X)

3/4
=

2/3

3/4
=

8

9
.
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To bound the second probability, we need to calculate E(W ) first.
Now

FW (w) = P (W ≤ w) = P (X ≤ 3
√
w) = w2/3 , 0 ≤ w ≤ 1.

Therefore

fW (w) =
2

3
w−1/3 , 0 ≤ w ≤ 1,

so that:

E(W ) =

∫ 1

0

w · 2

3
w−1/3dw =

[
2

5
w5/3

]1
0

=
2

5
.

By Markov’s inequality:

P (W ≥ 27/64) ≤ E(W )

27/64
=

128

135
.

Thus, only (e) is true.

5. A fact that will be used several times in the course of our calculations
is that, if we are given independent random variables Ti ∼ Exp(θi), 1 ≤
i ≤ r, then min1≤i≤r Ti ∼ Exp(

∑r
i=1 θi).

(a) The time until the first customer, out of those currently being
served, will finish is the minimum of k independent random vari-
ables, all Exp(1)-distributed, and is therefore Exp(k)-distributed.
Due to the memorylessness property of the exponential distribu-
tion, the time from that point until the next customer will finish
is also distributed the same. In general, as long as all tellers still
serve customers, the time between consecutive service completions
is distributed Exp(k). After the (m+1)-st customer is served, only
k − 1 customers are being served in parallel, so that the time un-
til another customer finishes is Exp(k − 1)-distributed. Similarly,
the time until another customer finishes is Exp(k−2)-distributed,
and so forth. Hence the total time is a sum of k+m independent
random variables, m− k+ 1 of which are Exp(k)-distributed, and
the other k−1 are Exp(k−1)-distributed, Exp(k−2)-distributed,
..., Exp(1)-distributed.
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(b) Employing again the memorylessness property of the exponential
distribution, we see that each of the customers in line has the
same probability of 1/k of being served by any of the tellers, and
distinct customers are independent. Consider the events:

Ai = {Xi = 0}, i = 1, 2, . . . , k.

Obviously:

P (X1 > 0, X2 > 0, . . . , Xk > 0) = P

 k⋃
i=1

Ai

 .

Now for any distinct indices i1, i2, . . . , il between 1 and k we have:

P (Ai1 ∩ Ai2 ∩ . . . ∩ Ail) =

(
1− l

k

)m

.

By the formula for the probability of a union of events:

P (X1 > 0, . . . , Xk > 0) = 1− k
(

1− 1

k

)m

+

(
k

2

)(
1− 2

k

)m

−
(
k

3

)(
1− 3

k

)m

+ . . .

+ (−1)k−1
(

k

k − 1

)(
1− k − 1

k

)m

.

(c) If m = k, then the event {X1 > 0, . . . , Xk > 0} occurs only
if each teller gets exactly one of the customers in line. There
are altogether kk possibilities as to which teller will serve each
customer. The possibilities comprising our event correspond to
all possibilities of matching the tellers with the customers, which
is the number of permutations of k items. Hence:

P (X1 > 0, . . . , Xk > 0) =
k!

kk
.

(d) As explained above, each customer has equal probabilities of 1/k of
being served by each of the tellers, independently of which tellers
serve the other customers. Hence (X1, X2, . . . , Xm) is multinomi-
ally distributed, where the parameter indicating the number of
trials is m and the vector of probabilities is (1/k, 1/k, . . . , 1/k).

14



(e) The claim is false already for k = 2. In fact, using part (a) we see
that

E(T2) =
1

2
+

1

1
=

3

2
,

while

E(T3) =
1

2
+

1

2
+

1

1
= 2.

Thus, (a), (c) and (d) are true.

6. (a) In general, it follows from the definition of the multinomial distri-
bution that any sum of some of the components of a multinomially
distributed random variable is binomially distributed. Specifically,
if (X1, X2, . . . , Xk) is multinomially distributed with parameters
n (number of trials) and (p1, p2, . . . , pk) (vector of probabilities),

then
∑l

j=1Xij ∼ B
(
n,
∑l

j=1 pij

)
.

(b) View X and Y as measuring the life lengths of two independent
items with the memorylessness property. Then |X − Y | measures
the time difference between the two life lengths. Since when the
first item “died”, the second was “as new”, this difference is again
Exp(θ)-distributed.

(c) Let X ∼ N(µ1, σ
2
1), Y ∼ N(µ2, σ

2
2). Then X−Y ∼ N(µ1−µ2, σ

2
1 +

σ2
2). Hence:

P (X > Y ) = P (X − Y > 0)

= P

(
(X − Y )− (µ1 − µ2)√

σ2
1 + σ2

2

>
−(µ1 − µ2)√

σ2
1 + σ2

2

)

= P

(
Z >

−(µ1 − µ2)√
σ2
1 + σ2

2

)
,

where Z ∼ N(0, 1). The probability on the right-hand side is
clearly 1/2 if and only if µ1 = µ2.

(d) Denote Yn = Xn + an and νn = E(Yn) for n ≥ 1. One easily
verifies that

Ȳn = X̄n + ān
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and
ν̄n = µ̄n + ān

for each n. Thus:
Ȳn − ν̄n = X̄n − µ̄n.

Since (Xn)∞n=1 satisfies the weak law of large numbers, so does
(Yn)∞n=1.

(e) The moment generating function of X is, by the formula for the
moment generating function of normal random variables, also the
moment generating function of an N(1, 100)-distributed random
variable. Since the moment generating function determines the
distribution uniquely, X ∼ N(1, 100). Hence P (X > 1) = 1/2.

Thus, (a) and (e) are true.
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