Final \#2 - Questions 4-6

Mark all correct answers in each of the following questions.
4. A carpenter has a batch of n wooden sticks of unit length each. He breaks each stick at a random point, so that the distance X of the breaking point from the left endpoint is distributed $U(0,1)$. Then he takes out of each pair of pieces the long one, and combines all these pieces into a single stick of length L. Similarly, he combines all small pieces into one stick of length S. (For example, if $n=3$, and the breaking points are at distances of $0.2,0.4$ and 0.7 from the left endpoints of the three sticks, then $L=0.8+0.6+0.7=2.1$ and $S=0.2+0.4+0.3=0.9$.)
(a) When breaking each of the initial sticks, the length of the long piece is distributed according to the following distribution function:

$$
F(x)= \begin{cases}0, & x<1 / 2 \\ 4(x-1 / 2)^{2}, & 1 / 2 \leq x \leq 1 \\ 1, & x>1\end{cases}
$$

(b) $E(S)=\frac{n}{4}$.
(c) $E\left(\frac{S}{L}\right)=\frac{1}{3}$.
(d) Let X be the number of sticks, out of n, such that, when broken, form a large piece of length at least 0.9 and a small piece of length at most 0.1. Let Y be the total length of the large pieces generated out of these X sticks. Then X, Y are uncorrelated but dependent.
(e) The normal approximation gives, for $n=19200$,

$$
P(L \geq 14360) \approx 0.84
$$

5. The random variable (X, Y) is uniformly distributed in the region:

$$
S=\{(x, y): 0 \leq x \leq \pi / 4, \sin x \leq y \leq \operatorname{tg} x\}
$$

Namely, denoting by s the area of S, the probability for (X, Y) to assume values in a sub-region $S^{\prime} \subseteq S$ is area $\left(S^{\prime}\right) / s$. You may verify that $s=\frac{1}{2} \ln 2+\frac{\sqrt{2}}{2}-1$.
(a) The distribution function of X is:

$$
F_{X}(x)= \begin{cases}0, & x<0 \\ \frac{-\ln \cos x+\cos x-1}{s}, & 0 \leq x \leq \frac{\pi}{4} \\ 1, & x>\frac{\pi}{4}\end{cases}
$$

(b) The density function of Y is:

$$
f_{Y}(y)= \begin{cases}\frac{\arcsin y-\operatorname{arctg} y}{s}, & 0 \leq y \leq 1 \\ 0, & \text { otherwise }\end{cases}
$$

(c) $P(Y \geq X)=1 / 2$.
(d) $\rho(X, Y)>0$. (Hint: Do not calculate it exactly.)
(e) Let $\left(X_{1}, Y_{1}\right),\left(X_{2}, Y_{2}\right), \ldots,\left(X_{n}, Y_{n}\right)$ be independent random variables, all distributed as (X, Y). For $0 \leq k \leq n$, denote by I_{k} the number of indices j in the range from 1 to k for which $Y_{j} \geq X_{j}$. Suppose n is even. Then:

$$
P\left(\left.\min _{0 \leq k \leq n}\left(I_{k}-\frac{k}{2}\right)=0 \right\rvert\, I_{n}=\frac{n}{2}\right)=\frac{1}{n} .
$$

6. (a) The random variable X assumes all values $\pm 1 / 2^{n}, n=0,1,2, \ldots$, with probabilities:

$$
P\left(X=1 / 2^{n}\right)=P\left(X=-1 / 2^{n}\right)=1 / 2^{n+2}, \quad n=0,1,2, \ldots
$$

Then F_{X} is continuous at the point 0 .
(b) A gambler tosses a coin until the upface shows T. Denote by X the number of tosses. If X is even, the player wins 2^{X} shekels, while if it is odd, then he needs to pay 2^{X} shekels. Then the expected value of his winnings is 0 .
(c) X is a random variable with finite expectation and variance. S is a random variable, assuming the values 1 and -1 , with probability $1 / 2$ each. It is known that X, S are independent. Then X and $S X$ may be dependent, but in any case are uncorrelated.
(d) X is a random variable with finite variance. X_{1}, X_{2} are independent random variables, each distributed as X. Then:

$$
E\left(\left(X_{1}-X_{2}\right)^{2}\right)=V(X)
$$

(e) $\left(X_{n}\right)_{n=1}^{\infty}$ is a sequence of independent random variables, with the same expectation μ and the same variance σ^{2} to all of them. Then:

$$
V\left(\frac{X_{1}+2 X_{2}+3 X_{3}+\ldots+n X_{n}}{n^{3 / 2}}\right) \underset{n \rightarrow \infty}{\longrightarrow} 2 \sigma^{2}
$$

Solutions

4. (a) Denote by L_{i} the length of the long piece of the i-th stick. Clearly, L_{i} assumes values between $1 / 2$ and 1 . For $1 / 2 \leq x \leq 1$, we have $L_{i} \leq x$ if and only if the breaking point is at a distance of at least $1-x$ and at most x from the left endpoint of the stick. Hence:

$$
F(x)= \begin{cases}0, & x<1 / 2 \\ 2 x-1, & 1 / 2 \leq x \leq 1 \\ 1, & x>1\end{cases}
$$

(b) The formula for the distribution function of L_{i} shows that $L_{i} \sim$ $U(1 / 2,1)$. Hence $E\left(L_{i}\right)=3 / 4$. Since $L=\sum_{i=1}^{n} L_{i}$, we obtain $E(L)=3 n / 4$. Now $S=n-L$, so that $E(S)=n / 4$.
(c) The claim is false already for $n=1$. Indeed, in this case we have $S / L \leq t$ (for $0 \leq t \leq 1$) if $\frac{1-L}{L} \leq t$, which is equivalent to $L \geq \frac{1}{1+t}$. It follows that

$$
F_{S / L}(t)= \begin{cases}0, & t<0 \\ 1-F_{L}\left(\frac{1}{1+t}\right), & 0 \leq t \leq 1 \\ 1, & t>1\end{cases}
$$

Consequently:

$$
\begin{aligned}
E(S / L) & =\int_{0}^{\infty}\left(1-F_{S / L}(t)\right) d t=\int_{0}^{1}\left(2 \cdot \frac{1}{1+t}-1\right) d t \\
& =[2 \ln (1+t)-1]_{t=0}^{1}=2 \ln 2-1 .
\end{aligned}
$$

(d) We clearly have $X=\sum_{i=1}^{n} X_{i}$ and $Y=\sum_{i=1}^{n} Y_{i}$, where:

$$
X_{i}=\left\{\begin{array}{ll}
1, & 0.9 \leq L_{i}<1, \\
0, & \text { otherwise },
\end{array} \quad Y_{i}= \begin{cases}L_{i}, & 0.9 \leq L_{i}<1 \\
0, & \text { otherwise }\end{cases}\right.
$$

for $1 \leq i \leq n$. It follows easily that $E\left(X_{i}\right)=0.2$ and $E\left(Y_{i}\right)=0.19$. Therefore:

$$
E(X) E(Y)=0.2 n \cdot 0.19 n=0.038 n^{2}
$$

Now:

$$
E(X Y)=\sum_{i=1}^{n} \sum_{j=1}^{n} E\left(X_{i} Y_{j}\right)
$$

Split the sum into two sub-sums, one formed by all pairs of indices (i, j) with $i \neq j$ and the other by those with $i=j$. Since $X_{i} Y_{i}=Y_{i}$ for each i, and X_{i}, Y_{j} are independent for $i \neq j$, we have:

$$
E(X Y)=n(n-1) \cdot 0.2 \cdot 0.19+n \cdot 0.19=0.038 n^{2}+0.152 n
$$

Since $E(X Y)>E(X) E(Y)$, the variables X, Y are positively correlated. (Note that the result is very intuitive; the larger X is, the more larger pieces there are, and therefore their total length should be expected to be larger.)
(e) We have seen earlier that $E\left(L_{i}\right)=3 / 4$, and we similarly have $V\left(L_{i}\right)=\frac{(1-1 / 2)^{2}}{12}=\frac{1}{48}$. Hence:

$$
\begin{aligned}
P(L \geq 14360) & =P\left(\sum_{i=1}^{19200} L_{i} \geq 14360\right) \\
& =P\left(\frac{\sum_{i=1}^{19200} L_{i}-19200 \cdot \frac{3}{4}}{\sqrt{19200 \cdot \frac{1}{48}}} \geq \frac{14360-19200 \cdot \frac{3}{4}}{\sqrt{19200 \cdot \frac{1}{48}}}\right) .
\end{aligned}
$$

The normal approximation gives:

$$
P(L \geq 14360) \approx P(Z \geq-2)
$$

where Z is a standard normal variable. Thus, the required probability is approximately 0.977 .
Thus, only (b) is true.
5. (a) The area between the curves $y=\sin t$ and $y=\operatorname{tg} t$, from $t=0$ up to $t=x$, is:

$$
\int_{0}^{x}(\operatorname{tg} t-\sin t) d t=[-\ln \cos t+\cos t]_{t=0}^{x}=-\ln \cos x+\cos x-1
$$

Hence the distribution function of X is:

$$
F_{X}(x)= \begin{cases}0, & x<0 \\ \frac{-\ln \cos x+\cos x-1}{s}, & 0 \leq x \leq \frac{\pi}{4}, \\ 1, & x>\frac{\pi}{4}\end{cases}
$$

(b) The region S may be represented in the form:

$$
\begin{aligned}
S= & \{(x, y): 0 \leq y \leq \sqrt{2} / 2, \operatorname{arctg} y \leq x \leq \arcsin y\} \\
& \cup\{(x, y): \sqrt{2} / 2 \leq y \leq 1, \operatorname{arctg} y \leq x \leq \pi / 4\} .
\end{aligned}
$$

It follows that:

$$
f_{Y}(y)= \begin{cases}\frac{\arcsin y-\operatorname{arctg} y}{S}, & 0 \leq y \leq \frac{\sqrt{2}}{2} \\ \frac{\pi / 4-\operatorname{arctg} y}{s}, & \frac{\sqrt{2}}{2}<y \leq 1 \\ 0, & \text { otherwise }\end{cases}
$$

(c) The probability of the event $\{Y \geq X\}$ is given by the ratio of the area of the subset of S, consisting of those points (x, y) satisfying the condition $y \geq x$, and the total area of S. The first area is given by

$$
\int_{0}^{\pi / 4}(\operatorname{tg} x-x) d x=\left[-\ln \cos x-\frac{x^{2}}{2}\right]_{x=0}^{\pi / 4}=\frac{1}{2} \ln 2-\frac{\pi^{2}}{32}
$$

Hence:

$$
P(Y \geq X)=\frac{16 \ln 2-\pi^{2}}{16 \ln 2+16 \sqrt{2}-32} \neq \frac{1}{2}
$$

(d) The curves $y=\operatorname{tg} x$ and $y=\sin x$, bounding the region S from above and from below, respectively, both grow with x. Hence, as the random variable X assumes larger values, the random variable Y tends to assume larger values as well. Thus, $\rho(X, Y)>0$.
(e) The required probability is the conditional probability that, given that $Y_{i} \geq X_{i}$ for exactly half of the indices i, no initial subsequence has the property that more i 's satisfy the inverse inequality up to that point. This question is equivalent to the one asked in the ballot problem, and consequently the required probability is $\frac{1}{n / 2+1}=\frac{2}{n+2}$.
Thus, (a) and (d) are true.
6. (a) Since $P(X=0)=0$, the function F_{X} is continuous at 0 . Let us also show it directly in this case. Since X is symmetric around 0 , we have $F_{X}(0)=1 / 2$. We have to show that $F_{X}(x)$ may be made arbitrarily close to $1 / 2$ by taking x sufficiently close to 0 . In fact, take, for example, $x<0$. If $x>-1 / 2^{m}$ for some non-negative integer m, then

$$
F_{X}(x) \geq \sum_{k=0}^{m} \frac{1}{2^{k+2}}=\frac{1}{2}-\frac{1}{2^{m+2}}
$$

The right-hand side converges to $1 / 2$ as $m \rightarrow \infty$, which proves our claim.
(b) Let Y denote the gambler's winnings. The series defining $E(Y)$ may be written in this case in the form

$$
\sum_{n=1}^{\infty}(-2)^{n} \cdot \frac{1}{2^{n}}
$$

The series does not converge, so that $E(Y)$ does not exist. (In fact, $|Y|$ is the random variable arising is St. Petersburg Paradox. We have shown in class that $E(|Y|)$ is infinite, and therefore $E(Y)$ does not exist as well.)
(c) X and $S X$ are indeed usually dependent, as by knowing the value of X we know that of $S X$ up to sign. However, due to the independence of X and S, and since $E(S)=0$, we have

$$
\begin{aligned}
\operatorname{Cov}(X, S X) & =E\left(S X^{2}\right)-E(X) E(S X) \\
& =E(S) E\left(X^{2}\right)-E(S) E^{2}(X)=0 .
\end{aligned}
$$

(d) A routine calculation yields:

$$
\begin{aligned}
E\left(\left(X_{1}-X_{2}\right)^{2}\right) & =E\left(X_{1}^{2}-2 X_{1} X_{2}+X_{2}^{2}\right) \\
& =E\left(X^{2}\right)-2 E(X) E(X)+E\left(X^{2}\right)=2 V(X)
\end{aligned}
$$

(e) Since the X_{i} 's are independent, so are the $i X_{i}$'s, and therefore:

$$
\begin{aligned}
V\left(\frac{X_{1}+2 X_{2}+\ldots+n X_{n}}{n^{3 / 2}}\right) & =\frac{1}{n^{3}}\left(V\left(X_{1}\right)+\ldots+V\left(n X_{n}\right)\right) \\
& =\frac{\sigma^{2}+2^{2} \sigma^{2}+\ldots+n^{2} \sigma^{2}}{n^{3}} \\
& =\frac{n(n+1)(2 n+1)}{6 n^{3}} \sigma^{2} \underset{n \rightarrow \infty}{\longrightarrow} \frac{\sigma^{2}}{3} .
\end{aligned}
$$

Thus, (a) and (c) are true.

