
Final #2 – Questions 4-6

Mark all correct answers in each of the following questions.

4. A carpenter has a batch of n wooden sticks of unit length each. He
breaks each stick at a random point, so that the distanceX of the break-
ing point from the left endpoint is distributed U(0, 1). Then he takes
out of each pair of pieces the long one, and combines all these pieces
into a single stick of length L. Similarly, he combines all small pieces
into one stick of length S. (For example, if n = 3, and the breaking
points are at distances of 0.2, 0.4 and 0.7 from the left endpoints of the
three sticks, then L = 0.8+0.6+0.7 = 2.1 and S = 0.2+0.4+0.3 = 0.9.)

(a) When breaking each of the initial sticks, the length of the long piece
is distributed according to the following distribution function:

F (x) =


0, x < 1/2,
4(x− 1/2)2, 1/2 ≤ x ≤ 1,
1, x > 1

(b) E(S) = n
4
.

(c) E
(
S
L

)
= 1

3
.

(d) Let X be the number of sticks, out of n, such that, when broken,
form a large piece of length at least 0.9 and a small piece of length
at most 0.1. Let Y be the total length of the large pieces generated
out of these X sticks. Then X, Y are uncorrelated but dependent.

(e) The normal approximation gives, for n = 19200,

P (L ≥ 14360) ≈ 0.84.
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5. The random variable (X, Y ) is uniformly distributed in the region:

S = {(x, y) : 0 ≤ x ≤ π/4, sinx ≤ y ≤ tg x}.

Namely, denoting by s the area of S, the probability for (X, Y ) to
assume values in a sub-region S ′ ⊆ S is area(S ′)/s. You may verify

that s = 1
2

ln 2 +
√
2
2
− 1.

(a) The distribution function of X is:

FX(x) =


0, x < 0,
− ln cosx+cosx−1

s
, 0 ≤ x ≤ π

4
,

1, x > π
4
.

(b) The density function of Y is:

fY (y) =

{
arcsin y− arctg y

s
, 0 ≤ y ≤ 1,

0, otherwise.

(c) P (Y ≥ X) = 1/2.

(d) ρ(X, Y ) > 0. (Hint: Do not calculate it exactly.)

(e) Let (X1, Y1), (X2, Y2), . . . , (Xn, Yn) be independent random vari-
ables, all distributed as (X, Y ). For 0 ≤ k ≤ n, denote by Ik the
number of indices j in the range from 1 to k for which Yj ≥ Xj.
Suppose n is even. Then:

P

(
min
0≤k≤n

(
Ik −

k

2

)
= 0

∣∣∣∣In =
n

2

)
=

1

n
.

6. (a) The random variable X assumes all values ±1/2n, n = 0, 1, 2, . . . ,
with probabilities:

P (X = 1/2n) = P (X = −1/2n) = 1/2n+2, n = 0, 1, 2, . . . .

Then FX is continuous at the point 0.

(b) A gambler tosses a coin until the upface shows T. Denote by X the
number of tosses. If X is even, the player wins 2X shekels, while
if it is odd, then he needs to pay 2X shekels. Then the expected
value of his winnings is 0.
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(c) X is a random variable with finite expectation and variance. S is a
random variable, assuming the values 1 and −1, with probability
1/2 each. It is known that X,S are independent. Then X and
SX may be dependent, but in any case are uncorrelated.

(d) X is a random variable with finite variance. X1, X2 are indepen-
dent random variables, each distributed as X. Then:

E
(
(X1 −X2)

2
)

= V (X).

(e) (Xn)∞n=1 is a sequence of independent random variables, with the
same expectation µ and the same variance σ2 to all of them. Then:

V

(
X1 + 2X2 + 3X3 + . . .+ nXn

n3/2

)
−→
n→∞

2σ2.

Solutions

4. (a) Denote by Li the length of the long piece of the i-th stick. Clearly,
Li assumes values between 1/2 and 1. For 1/2 ≤ x ≤ 1, we have
Li ≤ x if and only if the breaking point is at a distance of at least
1− x and at most x from the left endpoint of the stick. Hence:

F (x) =


0, x < 1/2,
2x− 1, 1/2 ≤ x ≤ 1,
1, x > 1.

(b) The formula for the distribution function of Li shows that Li ∼
U(1/2, 1). Hence E(Li) = 3/4. Since L =

∑n
i=1 Li, we obtain

E(L) = 3n/4. Now S = n− L, so that E(S) = n/4.

(c) The claim is false already for n = 1. Indeed, in this case we have
S/L ≤ t (for 0 ≤ t ≤ 1) if 1−L

L
≤ t, which is equivalent to L ≥ 1

1+t
.

It follows that

FS/L(t) =


0, t < 0,
1− FL

(
1

1+t

)
, 0 ≤ t ≤ 1,

1, t > 1
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Consequently:

E(S/L) =

∫ ∞
0

(1− FS/L(t))dt =

∫ 1

0

(
2 · 1

1 + t
− 1

)
dt

= [2 ln(1 + t)− 1]1t=0 = 2 ln 2− 1.

(d) We clearly have X =
∑n

i=1Xi and Y =
∑n

i=1 Yi, where:

Xi =

{
1, 0.9 ≤ Li < 1,
0, otherwise,

Yi =

{
Li, 0.9 ≤ Li < 1,
0, otherwise,

for 1 ≤ i ≤ n. It follows easily that E(Xi) = 0.2 and E(Yi) = 0.19.
Therefore:

E(X)E(Y ) = 0.2n · 0.19n = 0.038n2.

Now:

E(XY ) =
n∑
i=1

n∑
j=1

E(XiYj).

Split the sum into two sub-sums, one formed by all pairs of indices
(i, j) with i 6= j and the other by those with i = j. Since XiYi = Yi
for each i, and Xi, Yj are independent for i 6= j, we have:

E(XY ) = n(n− 1) · 0.2 · 0.19 + n · 0.19 = 0.038n2 + 0.152n.

Since E(XY ) > E(X)E(Y ), the variables X, Y are positively cor-
related. (Note that the result is very intuitive; the larger X is,
the more larger pieces there are, and therefore their total length
should be expected to be larger.)

(e) We have seen earlier that E(Li) = 3/4, and we similarly have

V (Li) = (1−1/2)2
12

= 1
48
. Hence:

P (L ≥ 14360) = P

(
19200∑
i=1

Li ≥ 14360

)

= P

∑19200
i=1 Li − 19200 · 3

4√
19200 · 1

48

≥
14360− 19200 · 3

4√
19200 · 1

48

 .
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The normal approximation gives:

P (L ≥ 14360) ≈ P (Z ≥ −2),

where Z is a standard normal variable. Thus, the required prob-
ability is approximately 0.977.

Thus, only (b) is true.

5. (a) The area between the curves y = sin t and y = tg t, from t = 0 up
to t = x, is:∫ x

0

( tg t− sin t)dt = [− ln cos t+ cos t]xt=0 = − ln cosx+ cosx− 1.

Hence the distribution function of X is:

FX(x) =


0, x < 0,
− ln cosx+ cosx− 1

s
, 0 ≤ x ≤ π

4
,

1, x > π
4
.

(b) The region S may be represented in the form:

S ={(x, y) : 0 ≤ y ≤
√

2/2, arctg y ≤ x ≤ arcsin y}
∪ {(x, y) :

√
2/2 ≤ y ≤ 1, arctg y ≤ x ≤ π/4}.

It follows that:

fY (y) =


arcsin y − arctg y

s
, 0 ≤ y ≤

√
2
2
,

π/4− arctg y

s
,

√
2
2
< y ≤ 1,

0, otherwise.

(c) The probability of the event {Y ≥ X} is given by the ratio of the
area of the subset of S, consisting of those points (x, y) satisfying
the condition y ≥ x, and the total area of S. The first area is
given by∫ π/4

0

( tg x− x)dx =

[
− ln cosx− x2

2

]π/4
x=0

=
1

2
ln 2− π2

32
.
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Hence:

P (Y ≥ X) =
16 ln 2− π2

16 ln 2 + 16
√

2− 32
6= 1

2
.

(d) The curves y = tg x and y = sinx, bounding the region S from
above and from below, respectively, both grow with x. Hence, as
the random variable X assumes larger values, the random variable
Y tends to assume larger values as well. Thus, ρ(X, Y ) > 0.

(e) The required probability is the conditional probability that, given
that Yi ≥ Xi for exactly half of the indices i, no initial subsequence
has the property that more i’s satisfy the inverse inequality up
to that point. This question is equivalent to the one asked in
the ballot problem, and consequently the required probability is

1
n/2+1

= 2
n+2

.

Thus, (a) and (d) are true.

6. (a) Since P (X = 0) = 0, the function FX is continuous at 0. Let us
also show it directly in this case. Since X is symmetric around 0,
we have FX(0) = 1/2. We have to show that FX(x) may be made
arbitrarily close to 1/2 by taking x sufficiently close to 0. In fact,
take, for example, x < 0. If x > −1/2m for some non-negative
integer m, then

FX(x) ≥
m∑
k=0

1

2k+2
=

1

2
− 1

2m+2
.

The right-hand side converges to 1/2 as m → ∞, which proves
our claim.

(b) Let Y denote the gambler’s winnings. The series defining E(Y )
may be written in this case in the form

∞∑
n=1

(−2)n · 1

2n
.

The series does not converge, so that E(Y ) does not exist. (In
fact, |Y | is the random variable arising is St. Petersburg Paradox.
We have shown in class that E(|Y |) is infinite, and therefore E(Y )
does not exist as well.)
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(c) X and SX are indeed usually dependent, as by knowing the value
of X we know that of SX up to sign. However, due to the inde-
pendence of X and S, and since E(S) = 0, we have

Cov(X,SX) = E(SX2)− E(X)E(SX)

= E(S)E(X2)− E(S)E2(X) = 0.

(d) A routine calculation yields:

E
(
(X1 −X2)

2
)

= E
(
X2

1 − 2X1X2 +X2
2

)
= E

(
X2
)
− 2E(X)E(X) + E

(
X2
)

= 2V (X).

(e) Since the Xi’s are independent, so are the iXi’s, and therefore:

V

(
X1 + 2X2 + . . .+ nXn

n3/2

)
=

1

n3
(V (X1) + . . .+ V (nXn))

=
σ2 + 22σ2 + . . .+ n2σ2

n3

=
n(n+ 1)(2n+ 1)

6n3
σ2 −→

n→∞

σ2

3
.

Thus, (a) and (c) are true.
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