
Final #1 – Questions 4-6

Mark all correct answers in each of the following questions.

4. Two players – A and B – play a card game. In the beginning, each of
them has a deck of n ≥ 2 cards, marked by the numbers 1, 2, . . . , n.
The game consists of n stages. At each stage, A picks a random card
from B’s pile, and simultaneously B picks a random card from A’s pile.
(Thus, at the end of each stage, each player still has n cards.) For
1 ≤ i, k ≤ n, let Xi be the number on the card which A picks from B
at the i-th stage, Yi be the number on the card which B picks from A
at the same stage, and Mk be the number of times a card marked by k
is moved from one player to the other. Finally, let N be the number of
indices i between 1 and n for which Xi = Yi. (For example, if n = 3,
at the first stage A picks 2 and B picks 2, at the second stage A picks
2 and B picks 3, and at the third stage A picks 3 and B picks 2, then
X1 = X2 = Y1 = Y3 = 2, X3 = Y2 = 3,M1 = 0,M2 = 4,M3 = 2, N =
1.)

(a) Mk ∼ B(2n, 1/n) for each 1 ≤ k ≤ n.

(b) If n sufficiently large, then P (Mk = 0) ≈ e−2 for each 1 ≤ k ≤ n.

(c) If n sufficiently large, then P (Mk = 1) ≈ e−2 for each 1 ≤ k ≤ n.

(d) E(N) < 1.

(e) The events E1 = {Xi = Yi, 1 ≤ i ≤ n} and E2 = {M1 = 0} are
independent.

5. Let S = tg T , where T ∼ U(0, π/4). Let S1, S2, . . . , Sn be independent
random variables, all having the same distribution as S, and set W =
S1 + S2 + . . .+ Sn. Let M and N be the numbers of indices i between
1 and n for which

√
3

3
≤ Si ≤ 1 and 0 ≤ Si ≤ 1

1000
, respectively.
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(a) 2S has the same distribution as the variable |V |, where V is Cauchy
distributed. In particular, S does not have a mean.

(b) Markov’s inequality implies:

P
(
W ≥ n

2

)
≤ 4 ln 2

π
.

(c) Let n = 900. Approximation by the central limit theorem implies

P (M ∈ [250, 350]) ≥ 0.95.

(d) For n = 1000:

P (N = 3) ≈ 1

6e
.

(e) Let (X, Y ) be a pair of random variables with joint density function
f , defined by

f(x, y) =



c
(1+x2)(1+y2)

, 0 ≤ x ≤ 1
3
, 1

3
≤ y ≤ 1 ,

c
(1+x2)(1+y2)

, 1
3
≤ x ≤ 1, 0 ≤ y ≤ 1

3
,

0, otherwise,

where c is the unique constant for which f(x, y) is a 2-dimensional
density function. Then the random variable X is Cauchy dis-
tributed.

6. (a) Let X, Y be continuous random variables with density functions
fX , fY . It is given that fX(t) = 2fY (t) for every t > 0, while
fX(t) = 1

2
fY (t) for every t < 0. Then P (X > 0) = 2/3.

(b) A gambler has to participate in one of two gambles, in the first of
which his winnings are governed by the random variable X and
in the second by Y . The variables X and Y satisfy the properties
assumed in the preceding part. Then he should prefer the gamble
where his winnings are X.
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(c) The same question as in the preceding part, where X and Y have
the distribution functions FX and FY , defined by:

FX(x) =


0, x < 0,
x2, 0 ≤ x ≤ 1,
1, x > 1,

FY (y) =


0, y < 0,
y3, 0 ≤ y ≤ 1,
1, y > 1.

(d) If X is a non-constant random variable, and there exists a constant
c for which P (|X| < c) = 1, then ρ(Xn, Xn+1) ≥ 0 for every
positive integer n.

(e) Let X, Y be continuous random variables with density functions
fX , fY , respectively, which are both known to be positive in the
interval [0, 1] and to vanish outside it. If the functions fX , fY are
very close, then ρ(X, Y ) is very close to 1. More precisely, for
every ε > 0 there exists a δ > 0 such that, if |fX(t) − fY (t)| < δ
for every t ∈ R, then ρ(X, Y ) > 1− ε.

Solutions

4. (a) It is true that each Mk is a sum of 2n random variables, assuming
the values 0 and 1. Indeed, by considering each of the 2n card
drawings, and taking the random variable which is 1 if a card
marked by k was drawn that time and 0 otherwise, then Mk is
the sum of these variables. Moreover, by symmetry, the a priori
probability of each of these variables to assume the value 1 is 1/n.
However, the variables are dependent, so that the above does not
imply that Mk ∼ B(2n, 1/n). Indeed, already for n = 2 one
can easily verify that P (M1 = 1) = 1/8, whereas this probability
would be 1/4 if M1 was B(2n, 1/n)-distributed.

(b) The event {Mk = 0} occurs if, in each of the 2n drawings in the
game, a card other than k is chosen. This is easily seen to imply:

P (Mk = 0) =

(
1− 1

n

)2n

−→
n→∞

e−2 .
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(c) The event {Mk = 1} occurs if, for some i between 1 and n, within
the first i−1 stages none of the players draws one of the two cards
marked by k, at the i-th stage exactly one of them draws one of
these two cards, and in the last n − i stages again none of these
two cards is drawn. Noting that the (conditional) probability for
this to happen during the last n − i stages is (1 − 2/n)n−i, we
obtain:

P (Mk = 1) =
n∑
i=1

(
1− 1

n

)2(i−1)

· 2 · 1

n

(
1− 1

n

)(
1− 2

n

)n−i
.

(1)
Now on the one hand(

1− 1

n

)2(i−1)(
1− 2

n

)n−i
≤
(

1− 1

n

)2(i−1)
((

1− 1

n

)2
)n−i

=

(
1− 1

n

)2(n−1)

−→
n→∞

e−2 ,

and on the other hand(
1− 1

n

)2(i−1)(
1− 2

n

)n−i
≥
(

1− 2

n

)i−1(
1− 2

n

)n−i
=

(
1− 2

n

)n−1

−→
n→∞

e−2 .

Using the last two observations in (1), we get

P (Mk = 1) −→
n→∞

2e−2 .

(d) Obviously, N =
∑n

i=1Ni, where

Ni =

{
1, Xi = Yi,
0, otherwise,

and therefore

E(N) =
n∑
i=1

P (Xi = Yi).
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Now let Si denote the event whereby, at the beginning of the i-th
stage, each of A and B has exactly one of the cards marked by
1, exactly one of the cards marked by 2, and so forth. Clearly,
P (Xi = Yi|Si) = 1/n, while P (Xi = Yi|S̄i) < 1/n. Since P (Si) <
1 for i ≥ 2, we get

P (Xi = Yi) = P (Si)P (Xi = Yi|Si) + P (S̄i)P (Xi = Yi|S̄i) < 1/n.

Thus E(N) < 1.

(e) The event E1 occurs if, at each stage, player B picks from A’s cards
the counterpart of the card picked by A from B’s cards. Hence:

P (E1) =

(
1

n

)n
.

As explained above:

P (E2) =

(
1− 1

n

)2n

.

The event E1 ∩ E2 occurs if, at each stage, player B picks from
A’s cards the counterpart of the card picked by A from B’s cards
and, moreover, these two cards are marked by one of the numbers
between 2 and n. It follows that

P (E1 ∩ E2) =

(
n− 1

n2

)n
6= P (E1)P (E2),

and thus E1 and E2 are dependent.

Thus, (b) and (d) are true.

5. (a) The variable S assumes values only in the interval [0, 1], whereas
|V | may assume any non-negative value. Hence 2S and |V | cannot
have the same distribution.

(b) Clearly, FS vanishes on (−∞, 0) and is identically 1 on (1,∞). In
between we have

FS(s) = P (S ≤ s) = P (T ≤ arctg s) =
arctg s

π/4
, 0 ≤ s ≤ 1,
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so that

E(S) =

∫ 1

0

(
1− 4

π
arctg s

)
=1−

[
4

π
s arctg s

]1

0

+
4

π

∫ 1

0

s

1 + s2
ds

=1− 4

π
arctg 1 +

4

π

[
1

2
ln(1 + s2)

]1

0

=
2 ln 2

π
.

It follows that

E(W ) = nE(S) =
2n ln 2

π
.

Markov’s inequality implies therefore:

P
(
W ≥ n

2

)
≤ E(W )

n/2
=

4 ln 2

π
.

(c) Since

P

(√
3

3
≤ S ≤ 1

)
= 1− arctg

√
3/3

π/4
=

1

3
,

the random variable M is distributed B(900, 1/3). Approximation
by the central limit theorem, for n = 900, yields

P (M ∈ [250, 350]) = P

 250− 300√
900 · 1

3
· 2

3

≤ M − 300√
900 · 1

3
· 2

3

≤ 350− 300√
900 · 1

3
· 2

3


≈ P (−3.54 ≤ Z ≤ 3.54),

where Z ∼ N(0, 1). The right-hand side is very close to 1, and
therefore the required probability is certainly at least 0.95.

(d) The probability for S to assume values in the interval [0, 1/1000]

is arctg 1/1000
π/4

≈ 4
1000π

. Hence N is very close to a B
(
1000, 4

1000π

)
distributed variable. By the Poissonian approximation of the bi-
nomial distribution, N is distributed approximately P

(
4
π

)
. In

particular:

P (N = 3) ≈ (4/π)3

3!
e−4/π .
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(e) The random variable X assumes only values between 0 and 1,
while a Cauchy distributed variable may assume values on the
whole real line. Hence X cannot possibly be Cauchy distributed.

Thus, (b) and (c) are true.

6. (a) We have

P (X > 0) =

∫ ∞
0

fX(t)dt =

∫ ∞
0

2fY (t)dt = 2P (Y > 0),

and

P (X < 0) =

∫ 0

−∞
fX(t)dt =

∫ 0

−∞

1

2
fY (t) =

1

2
P (Y < 0).

Replacing P (X < 0) and P (Y < 0) by 1 − P (X > 0) and
1 − P (Y > 0), respectively, we obtain two equations in the two
unknowns P (X > 0) and P (Y > 0). Solving these equations, we
obtain P (X > 0) = 2/3 and P (Y > 0) = 1/3.

(b) Integrating the two density functions fX and fY , we find that
FX(t) ≤ FY (t) for every t ∈ R, which implies that the first gamble
is at least as good as the second.

(c) This time we have FX(t) ≥ FY (t) for every t ∈ R, with strict
inequality on the interval (0, 1). Hence the first gamble is worse
than the second.

(d) Recall that two random variables are positively correlated if large
values for one indicate large values of the other, and are nega-
tively correlated if large values for one indicate small values of the
other. Hence, to obtain a counter-example, it is natural to take
a random variable X which assumes negative values only. To be
specific, one may let X assume, say, the two values −1 and −2
with probabilities 1/2 each. By a routine calculation, we verify
that ρ(Xn, Xn+1) < 0 for every positive integer n.

(e) The condition whereby fX , fY are very close gives no informa-
tion regarding the issue of dependence/independence of X and Y .
Thus, for example, let X and Y be independent identically dis-
tributed. The density functions fX , fY are identical in this case,

7



yet X and Y are uncorrelated. (As a more extreme example, one
may take X as any continuous random variable with a density
function f , which is symmetric around 0, say X ∼ U(−1, 1) or
X ∼ N(0, σ2), and put Y = −X. Then the density functions
fX , fY are identical, but ρ(X, Y ) = −1.)

Thus, (a) and (b) are true.
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