
Final #2

Mark all correct answers in each of the following questions.

1. Consider the ballot problem with m = n = 4.

(a) The probability that at least one of the two candidates is not
behind the other throughout the entire counting process is 0.4.

(b) Suppose that the counting process is repeated over and over inde-
pendently. Let Xl be the number of times, out of the first l trials,
in which candidate #1 was not behind candidate #2 throughout
the entire counting process. Then X2k − Xk is distributed bino-
mially.

(c) Markov’s inequality implies:

P (X200 ≥ X100 + 30) ≤ 2

3
.

(d) Chebyshev’s inequality implies:

P (|X200 −X100 − 20| ≥ 8) ≤ 1

4
.

(e)
P (X20000 ≥ X10000 + 1960) ≈ Φ(1/

√
2),

where Φ is the standard normal distribution function.

(f)

P

(∣∣∣∣X2l −Xl

l
− 1

2

∣∣∣∣ > ε

)
−→
l→∞

0.
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2. Let k, n be positive integers. An urn contains n balls out of each of k
colors (altogether kn balls). The balls are drawn from the urn one by
one without replacement. For 1 ≤ i ≤ k, let Xi denote the sum of the
numbers of drawings in which balls of color i are drawn. For example,
if k = 3 and n = 2, and the colors of drawn balls are 3, 2, 2, 1, 3, 1,
then X1 = 10, X2 = 5, X3 = 6.

(a) E(Xi) = kn(kn+1)
2

, 1 ≤ i ≤ k.

(b) ρ(X1, X2) ≥ 0.

(c) If k = 6, then ρ(X1 +X2, X3 +X4) = −1
2
.

(d) Let Y = 1 if the first ball to be drawn is of color #1 and Y = 0
otherwise. Then Cov(X1, Y ) > 0.

(e) Let Z be the number of indices j, 1 ≤ j ≤ kn − 1, for which the
j-th ball and the (j + 1)-st ball are of the same color. Then Z is
distributed hypergeometrically.

(f) The k-tuple (X1, X2, . . . , Xk) is distributed multinomially.

3. Let X ∼ Exp(1). Put:

Y = X2, W =
√
X, S = [X], T = {X},

where [a] and {a} denote the integer part and the fractional part of a
real number a, respectively. (For example, [2.9] = 2 and {2.9} = 0.9.

(a) E(Y ) = 1.

(b) V (Y ) = 20.

(c) V (W ) = π
4
.

(d) S + 1 is geometrically distributed.

(e) S and T are independent.

(f) E(T ) < 1
2
.

(g) V (S) = 1
e
.
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4. Let X be a random variable.

(a) There exists a constant C such that, if X assumes only non-
negative values and E(X) = 1, then V (X) < C.

(b) If X is discrete and assumes with positive probabilities the values
x1, x2, . . ., where |xi − xj| > 1 for every i 6= j, then V (X) > 1.

(c) If X assumes only non-negative values and ρ(X,X2) exists, then
ρ(X,X2) ≥ 0.

(d) Let Y be an additional random variable. Suppose that at each
point of the sample space X and Y assume values of opposite
signs. (Assume for simplicity that X and Y do not assume the
value 0.) If ρ(X, Y ) exists, then ρ(X, Y ) < 0.

(e) If the moment generating function of X is ψX(t) = e3t+e−3t

2
, then

P (−1 ≤ X ≤ 1) ≥ 1
9
.

(f) It is impossible for the moment generating function of X to be
ψX(t) = cos t.

Solutions

1. The probability for a specific candidate not to be behind the other
throughout the counting process is 1/(4+1) = 0.2. Since it is impossible
that each of them is never behind the other, the probability in (a) is
2 · 0.2 = 0.4.

Defining as a success the event that candidate #1 is never behind can-
didate #2 throughout some specific counting process, X2k −Xk is the
number of successes within k independent trials. Hence X2k − Xk ∼
B(k, 0.2). For k = 100 we have

E(X200 −X100) = 100 · 0.2 = 20,

so that Markov’s inequality implies:

P (X200 ≥ X100 + 30) = P (X200 −X100 ≥ 30) ≤ 20

30
=

2

3
.
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Since
V (X200 −X100) = 100 · 0.2 · (1− 0.2) = 16,

Chebyshev’s inequality implies:

P (|X200 −X100 − 20| ≥ 8) ≤ 16

82
=

1

4
.

By the central limit theorem

P (X20000 ≥ X10000 + 1960) = P (X20000 −X10000 ≥ 1960)

= P

(
X20000−X10000−10000·0.2√

10000·0.2·(1−0.2)
≥ 1960−10000·0.2√

10000·0.2·(1−0.2)

)
≈ P (Z ≥ −1),

where Z is a standard normal random variable. Thus:

P (X20000 ≥ X10000 + 1960) ≈ Φ(1).

Similarly to the proof of the weak law of large numbers for i.i.d. random
variables with finite expectation and variance, we have:

P

(∣∣∣∣X2l −Xl

l
− 0.2

∣∣∣∣ > ε

)
≤ 0.2 · (1− 0.2)/l

ε2
−→
l→∞

0.

Consequently, the sequence
(

X2l−Xl

l

)∞
l=1

converges in probability, but
its limit is 0.2 and not 0.5.

Thus, (a), (b), (c) and (d) are true.

2. By symmetry, all E(Xi)’s, 1 ≤ i ≤ k, are identical. Now

k∑
i=1

Xi = 1 + 2 + . . .+ kn =
kn(kn+ 1)

2
,

and therefore

E(Xi) =
1

k
· kn(kn+ 1)

2
=
n(kn+ 1)

2
, 1 ≤ i ≤ k.
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Again by symmetry, all V (Xi)’s, 1 ≤ i ≤ k, are identical, as are all
Cov(Xi, Xj)’s for i 6= j. Hence:

0 = V
(∑k

i=1Xi

)
=

∑k
i=1 V (Xi) +

∑
i6=j Cov(Xi, Xj)

= kV (X1) + k(k − 1)Cov(X1, X2).

It follows that

Cov(X1, X2) = −V (X1)

k − 1
,

and therefore

ρ(X1, X2) =
Cov(X1, X2)√
V (X1)V (X2)

= − 1

k − 1
, (1)

We mention in passing that the fact that distinct Xi’s are negatively
correlated is intuitively clear. In fact, a large value of Xi indicates that
the balls of color i were drawn relatively late. This indicates that balls
of other colors were drawn early, so that other Xj’s should be relatively
small.

If k = 6, we may unite colors #1 and #2, colors #3 and #4, and
colors #5 and #6, and then use (1) to find the coefficient of correlation
between the sum of the numbers of drawings in which balls of colors #1
and #2 together were drawn and the sum of the numbers of drawings
in which balls of colors #3 and #4 together were drawn to obtain:

ρ(X1 +X2, X3 +X4) = − 1

3− 1
= −1

2
.

A large value of Y , namely Y = 1, means that the first ball to be drawn
is of color #1, which fact tends to indicate that the sum of the numbers
of drawings in which balls of color #1 are drawn is (a little) smaller
than could otherwise be expected. Hence Cov(X1, Y ) < 0.

Z has no connection to the trial used to define the hypergeometric
distribution, so that it should not be hypergeometrically distributed.
(Formally, one may show that this is the case in general as follows. Take
n = k = 2. It is easily verified that Z attains the values 0, 1, 2 with
probability 1/3 each. Suppose Z ∼ H(m, a, b) for some m, a, b. Since
anH(m, a, b)-distributed variable assumes with positive probability the
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integer values between max(0,m − b) and min(m, a), we must have
m ≤ b and min(m, a) = 2. If m = 2, then by equating the expected
value ma/(a+b) of anH(m, a, b)-distributed variable with the expected
value 1 of Z, we obtain b = a. Since P (Z = 0) = 1/3, we find that(

a
0

)(
b
2

)(
a+b
2

) =
1

3
.

The solution of the equation is b = 2, which is impossible. If a = 2, then
by equating expectations we get this time b = 2m− 2, and plugging in
the probability of the event {Z = 0} we again obtain a contradiction.)

In a multinomial distribution the (vector) values the variable may as-
sume are all integer vectors with non-negative components of some
fixed sum. The components of the values (X1, X2, . . . , Xk) assumes are

all at least 1 + 2 + . . .+ n = n(n+1)
2

, and hence (X1, X2, . . . , Xk) is not
multinomially distributed.

Thus, only (c) is true.

3. We have seen that the moment generating function of X is ψX(t) =
(1− t)−1 for t < 1. Therefore

E(Y ) = E(X2) =

[
d2

dt2
(1− t)−1

]
t=0

= [2(1− t)−3]t=0 = 2,

and

E(Y 2) = E(X4) =

[
d4

dt4
(1− t)−1

]
t=0

= [24(1− t)−5]t=0 = 24,

so that
V (Y ) = E(Y 2)− E(Y )2 = 20.

The distribution function of W is found by:

FW (w) = P (W ≤ w) = P (X ≤ w2) = 1− e−w2

, w ≥ 0.

Hence

fW (w) = P (W ≤ w) = P (X ≤ w2) = 2we−w2

, w ≥ 0,
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which gives

E(W ) =
∫∞

0
w · 2we−w2

dw =
∫∞
−∞w

2e−w2
dw

=
√
π

∫∞
−∞

1√
2π(1/

√
2)2
w2e

− w2

2(1/
√

2)2 dw.

The integral on the right hand side gives the expectation of the square
of an N(0, 1/2) random variable, and therefore

E(W ) =

√
π

2
.

It follows that:

V (W ) = E(W 2)− E(W )2 = E(X)− π

4
= 1− π

4
.

To find the distribution of S we note that for a non-negative integer k:

P (S = k) = P (k ≤ X < k + 1) = e−k − e−(k+1) =

(
1− 1

e

)
e−k.

This implies readily that S + 1 ∼ G(1− 1/e). In particular:

V (S) = V (S + 1) =
1/e

(1− 1/e)2
=

e

(e− 1)2
.

To verify that S and T are independent, it suffices to check that the
events {S = k} and {0 ≤ T < t}, with non-negative integer k and
t ∈ [0, 1], are independent. In fact,

P (0 ≤ T < t) =
∞∑

k=0

P (k ≤ X < k + t)

=
∞∑

k=0

(
(1− e−(k+t))− (1− e−k)

)
=

∞∑
k=0

e−k(1− e−t) =
1− e−t

1− 1/e
,

and therefore

P (S = k, 0 ≤ T < t) = P (k ≤ X < k + t)
= e−k − e−(k+t) = e−k(1− e−t)

= (1− 1/e)e−k · 1− e−t

1− 1/e
= P (S = k)P (0 ≤ T < t).
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To calculate the expected value of T we first find the density function
of T

fT (t) =
e−t

1− 1/e
=

e

e− 1
· e−t, 0 ≤ t ≤ 1.

Consequently:

E(T ) =

∫ 1

0

e

e− 1
· te−tdt =

e

e− 1

[
−te−t − e−t

]
t=0

=
e− 2

e− 1
<

1

2
.

Thus, (b), (d), (e) and (f) are true.

4. The fact that E(X) = 1 does not imply that V (X) exists. Even if
V (X) does exist, it may assume an arbitrarily large value. In fact,
given any C > 0, let X assume the two values 0 and C + 1 with
probabilities 1−1/(C+1) and 1/(C+1), respectively. Then E(X) = 1
and V (X) = C.

If X is discrete and assumes with positive probabilities infinitely many
values “far” from each other (|xi − xj| > 1 for every i 6= j), it may
still have a small variance if it assumes one value with a probabil-
ity sufficiently close to 1 and all others with very small probabilities.
Specifically, let X = 2Y , where Y ∼ G(p). Then all values X assumes
are at a distance of at least 2 apart, yet V (X) = 4q/p2, which can be
made arbitrarily small by choosing p sufficiently close to 1.

If X assumes only non-negative values, then X and X2 take small
values and large values together, so that ρ(X,X2) is positive if it exists.
Formally, this may be proved using Jensen’s inequality. In fact, since
the functions g(x) = x3 and h(x) = x3/2 are convex on the positive
x-axis, we have

E(X3) ≥ E(X)3,

and
E(X3) = E

(
(X2)3/2

)
≥ E(X2)3/2 .

Consequently

E(X3) = E(X3)1/3E(X3)2/3 ≥
(
E(X)3

)1/3 (
E(X2)3/2

)2/3
= E(X)E(X2),

which implies Cov(X,X2) ≥ 0 and therefore ρ(X,X2) ≥ 0.
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The fact that X and Y assume values of opposite signs at each point
does not mean that they cannot be positively correlated. For example,
let X assume the values 1 and 2 with probability 0.5 each, and let
Y = X − 3. Then X is always positive and Y always negative, yet
ρ(X, Y ) = 1. The example may be strengthened so as to have X and
Y assume both positive and negative values. In fact, let X assume the
values 1 and 2 with probability 0.5 − ε each and the value −1 with
probability 2ε. Let Y = X−3 if X > 0 and Y = 1 if X = −1. Clearly,
ρ(X, Y ) can be made arbitrarily close to 1 by taking ε sufficiently small.

If X assumes the values 3 and −3 with probability 0.5 each, then
ψX(t) = e3t+e−3t

2
. Since the moment generating function determines

the distribution uniquely, the opposite holds as well, and hence under
the assumptions of (e) we have P (−1 ≤ X ≤ 1) = 0.

If ψX(t) = cos t, then

E(X2) =

[
d2

dt2
cos t

]
t=0

= − cos 0 = −1,

which is impossible.

Thus, only (c) and (f) are true.
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