
Midterm

Mark all correct answers in each of the following questions.

1. The Computer Science Department and the Electrical Engineering De-
partment have n students each. When the secretariat of a department
has to send a letter to all students, it prepares the letters and the
envelopes separately, and then the letters are put in the envelopes ran-
domly. When it comes to the stage of stamping the envelopes, however,
the departments have different methods for cutting expenses. At the
Electrical Engineering Department they toss a die; if the die shows a
“6” – all letters are stamped, otherwise – none is stamped. At the Com-
puter Science Department (which is well known of giving each student
a personal service) they toss a die n times. If the result of the ith toss is
“6” – the ith envelope is stamped, otherwise – it is sent unstamped. De-
note by pn the probability that at least one letter sent by the Computer
Science Department is sent stamped to the correct address. Let qn be
the analogous probability for the Electrical Engineering Department.

(a) For all sufficiently large n we have pn = qn.

(b) For sufficiently large n the probabilities pn and qn are very close.
More precisely, pn

qn
−→
n→∞

1.

(c) For all sufficiently large n we have pn > qn.

(d) For all sufficiently large n we have pn < qn.

(e) We have 6qn + (1 − pn)6 −→
n→∞

1.

(f) We have pn + qn −→
n→∞

1/6.

(g) None of the above.
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2. Consider the problem, discussed in class, of 2n people standing in line
to buy tickets for a show. Suppose that, unlike the model presented
in class, each person tosses a coin before leaving his house, and takes
a 50-shekel bill or a 100-shekel bill depending on the outcome of this
experiment. (Thus, the number of people with 50 shekels may well
be different from that of people having 100 shekels.) Let pn be the
probability that none of the 100-shekel holders has to wait for change
at the cashier in this model, and qn the analogous probability for the
model presented in class. (Recall that qn = 1

n+1
.)

(a) For all sufficiently large n we have pn = qn.

(b) For all n:

pn =
1

22n

n
∑

j=0

2j + 1

n + j + 1

(

2n

n + j

)

.

(c) For all n:

pn =

(

2n
n

)

22n
.

(d) For sufficiently large n the probabilities pn and qn are very close,
namely pn

qn
−→
n→∞

1.

(e) For large n the first probability is much larger than the second,
namely pn

qn
−→
n→∞

∞.

(f) For large n the first probability is much smaller than the second,
namely pn

qn
−→
n→∞

0.

(g) None of the above.

3. Consider the following two loops.

// first loop

for (anyint n = 1, counter1 = 1, counter2 = 0;

counter1 != counter2; n++)

{

counter1 = counter2 = 0;

for (anyint i = 1; i <= 2 * n; i++)
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if (Math.random() < 0.5)

counter1++;

else

counter2++;

}

// second loop

for (anyint n = 1, counter1 = 1, counter2 = 0;

counter1 != counter2; n++)

{

counter1 = counter2 = 0;

for (anyint i = 1; i <= n; i++)

if (Math.random() < 0.5)

counter1++;

for (anyint i = 1; i <= n; i++)

if (Math.random() < 0.5)

counter2++;

}

Here anyint is a (theoretical) data type designed for all integers, with-
out any size restriction.

(a) Each of the loops terminates with probability 1. Moreover, there
is no reason to expect one of them to be executed usually more
times than the other.

(b) Each of the loops terminates with probability 1. However, the first
loop may be expected to be executed usually more times than the
second.

(c) Each of the loops terminates with probability 1. However, the
second loop may be expected to be executed usually more times
than the first.

(d) The probability of the first loop to terminate is less than 1, while
that of the second is 1.

(e) The probability of the second loop to terminate is less than 1,
while that of the first is 1.

(f) Each of the loops terminates with probability less than 1.
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(g) None of the above.

4. In Bill Gates’s mansion there are infinitely many rooms, denoted by
the integers from 1 on. Due to software problems at the electricity
system, when the electric switch at room n is turned, the situation of
the light bulbs at all rooms whose number is divisible by n is changed;
those that were on are turned off, while those which were off are turned
on. Mr. Gates arrives home when all rooms are dark and turns the
switch at some of them. (For example, if he turns only the switches
at rooms 1, 5 and 8, then rooms 3 and 200, say, are lit, while rooms
24 and 25 are dark.) Now suppose that at each room he turns the
switch with probability 1/3, different rooms being independent. Let
Ak, k = 1, 2, . . ., be the event that at the end of the process room k is
lit.

(a) P (A7) = 4/9, P (A9) > 4/9.

(b) P (A256) = 28

39

∑4
k=0

(

9
2k+1

)

/22k.

(c) P (A5m+1) = 2
3
P (A5m) + 1

3
(1 − P (A5m)), m ≥ 0.

(d) P (A2m) −→
m→∞

1
2
.

(e) The probabilities P (A2m) are in general smaller for even values of
m than for odd values of m. Moreover, the subsequence formed by
those at the even places converges to some α and the subsequence
formed by those at the odd places converges to some β, where
α < β.

(f) P (
⋂

∞

k=1 Ak) = 0.

(g) None of the above.

5. S1 is a random subset of {1, 2, . . . , n}, chosen by including each element
in it with probability 1/2, different elements being independent. S2 is
chosen in the same way. The sets T1 and T2 are chosen similarly, but the
probability of each element to belong to T1 is 2/3, while the probability
of each element to belong to T2 is 1/3. For n ≥ 1 and 0 ≤ k ≤ n, put:
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Ank = {|S1

⋃

S2| = k},
Bnk = {|T1

⋃

T2| = k},
Cnk = {|S1

⋂

S2| = k}.

(a) P (Ank) = P (Bnk) for all k and n.

(b) P (Ank) ≥ P (Bnk) for all k and n.

(c) P (Ank) =
(

6
7

)k (9
8

)n
for all k and n.

(d) If the events Ank1
and Cnk2

are disjoint for some n, k1 and k2,
then at least one of them is empty.

(e) For each n there exists a k such that P (Cnk|Ank) = 0.

(f) For each n there exists a k such that P (Cnk|Ank) = 1.

(g) None of the above.

Solutions

1. We start with calculating qn. The event that at least one letter will be
sent stamped to the correct address is given by the intersection B

⋂

C,
where B is the event that at least one letter will be sent to the correct
address and C is the event that the letters are stamped. Therefore

qn =
1

6

[

1 − 1

2!
+

1

3!
+ . . . +

(−1)n−1

n!

]

,

and in particular

qn −→
n→∞

1

6

(

1 − 1

e

)

.

To calculate pn, denote by Ai, i = 1, 2 . . . , n, the event that the ith
letter sent by the Computer Science Department is sent stamped to
the right address. Obviously, P (Ai) = 1

6
· 1

n
= 1

6n
. Moreover, the

intersection of any r distinct sets Ai is the same:

P

(

r
⋂

j=1

Aij

)

=
1

6r
· (n − r)!

n!
.
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The required event is simply
⋃n

i=1 Ai, and consequently:

pn = n · 1

6n
−
(

n

2

)

1

62n(n − 1)
+

(

n

3

)

1

63n(n − 1)(n − 2)
+ . . . +

(−1)n−1

6nn!

=
1

6
− 1

2!
· 1

62
+

1

3!

1

63
+ . . . +

(−1)n−1

n! · 6n
.

In particular:

pn −→
n→∞

1 − 1

e1/6
.

Since 1 − 1
e1/6 > 1

6

(

1 − 1
e

)

, we have pn > qn for all sufficiently large n.

Thus, only (c) and (e) are true.

2. Let A be the event discussed in the question, and Bk, k = 0, 1, 2, . . . , 2n,
the event that exactly k people come with a 50-shekel bill. Then:

P (A) =

2n
∑

k=0

P (Bk)P (A|Bk).

Now P (Bk) is the probability of obtaining k successes out of 2n inde-
pendent trials with success probability 1/2 each, so that

P (Bk) =

(

2n
k

)

22n
.

The conditional probability P (A|Bk) clearly vanishes for k < n. For
k ≥ n, the problem of calculating this probability is equivalent to that
of the ballot problem, discussed in class, with m and n there replaced
by k and 2n − k, respectively, in our problem. Thus

P (A|Bk) = 1 − 2n − k

k + 1
=

2k − 2n + 1

k + 1
=

(

2n
k

)

−
(

2n
k+1

)

(

2n
k

) .

Using the first expression for the probability, we obtain:

P (A) =

2n
∑

k=n

(

2n
k

)

22n
· 2k − 2n + 1

k + 1
=

1

22n

n
∑

j=0

2j + 1

n + j + 1

(

2n

n + j

)

.
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Using the second expression for P (A|Bk), we obtain:

P (A) =
2n
∑

k=n

(

2n
k

)

22n
·
(

2n
k

)

−
(

2n
k+1

)

(

2n
k

)

=
1

22n

n
∑

j=0

((

2n

n + j

)

−
(

2n

n + j + 1

))

=

(

2n
n

)

22n
.

Now according to Stirling’s formula:

(

2n

n

)

≈
√

2π · 2n(2n/e)2n

(
√

2πn(n/e)n)2
=

22n

√
πn

.

Thus, pn converges to 0 as C/
√

n, whereas qn does so as 1/n, and
consequently pn

qn
−→
n→∞

∞.

Thus, only (b), (c) and (e) are true.

3. The first loop terminates after the nth iteration, assuming it gets to
this iteration, if out of the 2n random numbers selected at the nth
iteration there are exactly n smaller than 0.5 and exactly n larger (or

equal). The probability for this is
(2n

n )
22n .

The second loop terminates after the nth iteration (again, assuming
it gets to this iteration) if in two independent sequences of random
numbers, of length n each, the same number of numbers less than 0.5
is obtained. The probability for this is

1

22n

n
∑

k=0

(

n

k

)2

=

(

2n
n

)

22n
.

Consequently, the probability for each loop to iterate at least n + 1
times is

n
∏

j=1

(

1 −
(

2j
j

)

22j

)

.

Since
(

2j
j

)

/22j ≈ C/
√

j, and
∑

∞

j=1 1/
√

j = ∞, the probability above
converges to 0 as n → ∞. Hence each loop terminates with probability
1 within a finite time.
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Thus, only (a) is true.

4. Obviously, the light at room n will be on at the end if and only if the
button is pressed at an odd number of rooms out of those enumerated
by divisors of n. Hence

P (An) =

[(d−1)/2]
∑

k=0

(

d

2k + 1

)(

1

3

)2k+1(
2

3

)d−2k−1

,

where d is the number of divisors of n.

In particular, since 7 has two divisors we have

P (A7) =

(

2

1

)

· 1

3
· 2

3
=

4

9
,

and since 9 has three divisors:

P (A9) =

(

3

1

)

· 1

3

(

2

3

)2

+

(

3

3

)

·
(

1

3

)3

=
10

27
>

4

9
.

Since 256 has nine divisors:

P (A256) =

4
∑

k=0

(

d

2k + 1

)(

1

3

)2k+1(
2

3

)9−2k−1

=
28

39

4
∑

k=0

(

9

2k + 1

)/

22k .

To get a recursive formula for P (A5m) we proceed as follows:

P (A5m+1) = P (A5m)P (A5m+1 |A5m) + P (A5m)P (A5m+1|A5m)

=
2

3
P (A5m) +

1

3
(1 − P (A5m)).

Similarly:

P (A2m+1) =
2

3
P (A2m) +

1

3
(1 − P (A2m)).

Therefore:

P (A2m+1) − 1

2
=

1

3

(

P (A2m) − 1

2

)

.
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By induction:

P (A2m) − 1

2
=

1

3m

(

P (A1) −
1

2

)

=
1

2 · 3m+1
,

which yields

P (A2m) −→
m→∞

1

2
.

Finally

P

(

∞
⋂

k=1

Ak

)

≤ P

(

n
⋂

k=1

Ak

)

=

(

2

3

)n

for every n ≥ 1, which proves that P
(
⋂

∞

k=1 Ak

)

= 0.

Thus, (a), (b), (c), (d) and (f) are true.

5. The probability of any element of {1, 2, . . . , n} not to belong to S1

⋃

S2

is 1/4. Thus the size of S1

⋃

S2 may be thought of as the number
of successes in a sequence of length n of trials, each having success
probability 3/4. Hence:

P (Ank) =

(

n

k

)(

3

4

)k (
1

4

)n−k

.

Similarly:

P (Bnk) =

(

n

k

)(

7

9

)k (
2

9

)n−k

.

The events Ank1
and Cnk2

may be disjoint even if none of them is
empty. In fact, since the union of sets is at least as large as their
intersection, Ank1

and Cnk2
are necessarily disjoint if k1 < k2. However,

for 0 ≤ k1, k2 ≤ n we have Ank1
6= ∅ and Cnk2

6= ∅.
For each n, the event An0 occurs if and only if both of the sets S1 and
S2 are empty, in which case Cn0 occurs as well. Thus P (Cn0|An0) = 1.
On the other hand, if any Ank is known to have occurred, it may be
the case that the sets S1 and S2 coincide, in which case Cnk occurs as
well. In particular, P (Cnk|Ank) > 0 for every n and k. (Actually, this
conditional probability is exactly (1/3)k.)

Thus, only (f) is true.
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