
Probability Theory for EE Students

Solutions to Selected Exercises

1 Probability Spaces

1.

(c) For the event in question to occur, the first dn/2e tosses may
have any outcomes, and then the other bn/2c tosses are uniquely
determined. Hence the required probability is 2dn/2e/2n =
1/2bn/2c.

2. 5/16.

5.

(a) 1
1·3·5·...·(2n−1) = 2nn!

(2n)!
.

(b) n!
1·3·5·...·(2n−1) = 2n

(2n
n )
.

6.

(a)

(i)
(
1− 1

n

)r−1
.

(ii) n(n−1)...(n−r+1)
nr

.

(b)

(i)
(
1− N

n

)r−1
.

(ii) (n)Nr
((n)N )r

, where we have denoted (x)r = x(x−1) . . . (x−r+1).
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9. 9·10k−1

10n
= 9/10n−k+1.

10. Note that{
(X2 − Y 2) mod 2 = 0

}
=

1⋃
k=0

{X mod 2 = Y mod 2 = k}

and{
(X2 − Y 2) mod 3 = 0

}
= {X mod 3 = Y mod 3 = 0}

⋃
{X mod 3, Y mod 3 6= 0} .

Clearly,

p2 =
1

n2

([n
2

]2
+
(
n−

[n
2

])2)
= 1− 2

n

[n
2

]
+

2

n2

[n
2

]2
,

and

p3 =
1

n2

([n
3

]2
+
(
n−

[n
3

])2)
= 1− 2

n

[n
3

]
+

2

n2

[n
3

]2
.

For n ≥ 4 we have:

p3−p2 =
2

n

([n
2

]
−
[n

3

])
− 2

n2

([n
2

]2
−
[n

3

]2)
=

2

n

([n
2

]
−
[n

3

])(
1− 1

n

([n
3

]
+
[n

2

]))
> 0.

11. The sets A1 and A2 may be chosen in 2n · 2n = 4n ways alto-
gether. To satisfy the condition A1

⋂
A2 = ∅, we have to require that

each j ∈ {1, 2, . . . , n} belongs to at most one of the sets A1 and A2.
Thus we have 3 possibilities for each j, namely either j ∈ A1

⋂
A2

or j ∈ A1

⋂
A2 or j ∈ A1

⋂
A2. Hence the number of possibilities

satisfying the requirement is 3n. It follows that the probability of
the event in question is (3/4)n.

13. Due to symmetry, all 3! = 6 possible orderings of X1, X2 and
X3 are equi-probable, whence each has probability 1/6.

14.

(a) 2/3

(b) 1
2k+1

(c) 1
2k

15.

(a) 15
16

(b) 2
3
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21.

(a) Since all the events in the union are disjoint, the probability is
the sum of probabilities. Consequently:

P

(
∞⋃
i=1

[
1

2i+ 1
,

1

2i

])
=
∞∑
i=1

(
1

2i
− 1

2i+ 1

)
= 1− ln 2

.

(b) For any n, the set in question is contained in the set of numbers
whose infinite decimal expansion does not contain the digit 7 in
any of the first n places. The latter set is clearly of probability
(9/10)n. Thus the probability of our set is less than (9/10)n

for each n, and therefore it vanishes.

(c) As in the preceding part, the probability is 0.

2 Basic Combinatorics

24. There are two points to consider: how many arrangements are
there for 5 digits and 5 letters, and how many choices of digits and
letters are there for any arrangement. Consider the second point:
there are 10 different digits, and repetitions are allowed, so there
are 105 possibilities. There are 26 letters, so altogether there are
105 · 265 possibilities. The only difference between the parts of the
question is the number of arrangements. Denote a place for a digit
by d, and a place for a letter by l.

(a) The single arrangement is dddddlllll. The number of possibili-
ties is 105 · 265.

(b) In general the digits and letters should alternate. However,
a single pair of adjacent digits is still possible. Observe that
each letter (except perhaps for the last) is followed by a digit,
so we have five objects: four ld pairs, and a single l. The
remaining d may be anywhere in between, or to the left of, or
to the right of these five objects − altogether 6 possibilities.
ldldldldld ldldldlddl ldldlddldl
ldlddldldl lddldldldl dldldldldl

.

The overall number is 6 · 105 · 265.

(c) The number of arrangements is
(
10
5

)
, so the overall number is(

10
5

)
· 105 · 265.

26. kn.

27.
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(a) rn.

(b) The first letter of the word may be any of the letters in Σ. In
each of the other n−1 places we may put any of the r−1 letters
distinct from the one in the preceding place. Hence there are
r(r − 1)n−1 possibilities in all.

(c)

(
n

n1, n2, . . . , nr

)
.

(d) r[
n+1
2 ].

28. Since n! = e
∑n
i=1 ln i the inequality

e
(n
e

)n
≤ n! ≤ e

(
n+ 1

e

)n+1

is equivalent to

n lnn− n+ 1 ≤
n∑
i=1

ln i ≤ (n+ 1) ln (n+ 1)− n.

Since
∫

lnxdx = x lnx − x + c and the function lnx is increasing,
we have ∫ n

1

lnxdx ≤
n∑
i=1

ln i ≤
∫ n+1

1

lnxdx,

which gives the required result.

29.

(a) (
2n

n

)
=

(2n)!

(n!)2
≈
√

2π2n
(
2n
e

)2n(√
2πn

(
n
e

)n)2 =
22n

√
πn

.

(b) Consider the 2nth row of Pascal’s triangle. The sum of all
entries is 22n, and therefore each of them, in particular the
middle entry

(
2n
n

)
, is less than 22n. On the other hand, it is

easy to check that the binomial coefficients
(
2n
j

)
increase as

j increases from 0 to n, and decrease from that place on. In
particular,

(
2n
n

)
is the maximal entry in the row. Consequently:

22n

2n+ 1
≤
(

2n

n

)
≤ 22n .

35. The first row may be any of the 2n vectors of length n, con-
sisting of 0’s and 1’s. After it has been chosen, we have 2n − 1
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possibilities for choosing the second row, then 2n−2 possibilities for
choosing the third row, and so forth. Altogether, the matrix may
be chosen in

2n (2n − 1) · . . . · (2n −m+ 1)

different ways.

3 Elementary Probability Calculations

42. The number of possibilities for choosing the cards is
(
52
13

)
(order

does not matter). This constitutes the denominator for all parts.

(a) There are 4 possible full hands, so the probability is 4/
(
52
13

)
.

(b) All the 13 cards should be chosen from the 48 non-ace cards:(
48
13

)
/
(
52
13

)
= 39·38·37·36

52·51·50·49 .

(c) There are
(
4
1

)
possibilities for choosing one of the four kings, and

the same for choosing one of the four queens. The remaining
11 cards should be chosen from the remaining 40 cards (52 in
the deck, excluding the ace, king and queen cards). As the
total number of possibilities for choosing the cards is

(
52
13

)
, the

required probability is:(
4
1

)(
4
1

)(
52−4−4−4

11

)(
52
13

) =

(
4
1

)2(40
11

)(
52
13

) .

(d) There are
(
4
1

)
ways to choose each card, and hence the proba-

bility is
(
4
1

)13
/
(
52
13

)
.

46.

(a) We have

ln(1− x) = −x− x2

2
+O(x3)),

and therefore
−x− x2 ≤ ln(1− x) ≤ −x

in a sufficiently small neighborhood of 0. The required result
follows by exponentiation.

(b) If αn 6→ 0, then clearly
∏∞

n=1(1 − αn) = 0 and
∑∞

n=1 αn = ∞.
Suppose therefore that αn → 0. Passing to logarithms, we see
that

∏∞
n=1(1 − αn) = 0 if and only if

∑∞
n=1 ln(1 − αn) = −∞.

By part (a), for sufficiently large n we have

−2αn ≤ −αn − α2
n ≤ ln(1− αn) ≤ −αn.
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Hence the series
∑∞

n=1− ln(1−αn) and
∑∞

n=1 αn diverge to ∞
together.

47.

(a) The required probability is the ratio between the number of
those choices for which all variables assume distinct values and
the number of all choices, that is n(n−1)·...·(n−k+1)

nk

(b) Write:

n(n− 1) · . . . · (n− k + 1)

nk
=

k−1∏
i=1

(
1− i

n

)
.

By the preceding exercise:

e−x−x
2 ≤ 1− x ≤ e−x.

Thus we have

k−1∏
i=1

e
−
i

n
−

 i
n

2

≤
k−1∏
i=1

(
1− i

n

)
≤

k−1∏
i=1

e
−
i

n .

Now

k−1∑
i=1

(
i

n
+

(
i

n

)2
)

=
k (k − 1)

2n
+
k (k − 1) (2k − 1)

6n2

=
(3n+ 2k − 1) k (k − 1)

6n2
.

Thus

k−1∏
i=1

e
−
i

n
−

 i
n

2

= e
−

(3n+ 2k − 1) k (k − 1)

6n2 .

Hence as n −→ ∞ and k√
n
−→ θ, the power in the exponent

tends to
√
nθ(
√
nθ − 1)

2n
+

√
nθ(
√
nθ − 1)(2

√
nθ − 1)

6n2
−→ θ2

2
.

The right-hand side of the inequality may be evaluated in a

similar way, so the limit is e−
θ2

2 .

49.
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(a) Let us show that:

lim sup
n→∞

An = [0, 2], lim inf
n→∞

An = [1/2, 1].

Indeed, if x ∈ [0, 1], then x ∈ An for each even n, while if
x ∈ [1, 2], then x ∈ An for each odd n, so that lim supn→∞An ⊇
[0, 2]. On the other hand, if x < 0, then x /∈ An for any n, while
if x > 2 then x /∈ An for n > 1

x−2 . This gives the inverse inclu-
sion lim supn→∞An ⊆ [0, 2].
If x ∈ [1/2, 1], then x ∈ An for each n, and in particular
lim infn→∞ ⊇ [1/2, 1]. If x < 1/2, then x /∈ An for any odd
n, while if x > 1 then x /∈ An for odd n > 1

x−1 . Therefore
lim infn→∞ ⊆ [1/2, 1].

(b) A point belongs to lim supn→∞An if it belongs to infinitely
many of the events An, which happens if and only if it belongs
to the union ∪∞i=kAi for each k. It follows that

lim sup
n→∞

An = ∩∞k=1 ∪∞i=k Ai,

which representation proves that lim supn→∞An is an event.
Similarly

lim inf
n→∞

An = ∪∞k=1 ∩∞i=k Ai,

which proves that lim infn→∞An is an event.

50.

(a) The number of all subsets of A is of size 2n. Thus, equivalently,
we have to calculate the sum of those binomial coefficients

(
n
k

)
with even k. Since the expression 1+(−1)k

2
takes the value 1 for

even k and vanishes for odd k, we have:∑
2|k

(
n

k

)
=

n∑
k=0

1 + (−1)k

2

(
n

k

)
=

1

2

n∑
k=0

(
n

k

)
+

1

2

n∑
k=0

(−1)k
(
n

k

)
=

1

2
· 2n +

1

2
· (1− 1)n = 2n−1.

Consequently the required probability is 1
2
.

(b) A simple calculation yields:

1 + ωk + ω2k =

{
3, 3|k,
0, 3 - k.
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Consequently:∑
3|k

(
n

k

)
=

n∑
k=0

1 + ωk + ω2k

3

(
n

k

)
=

1

3

[
2n + (1 + ω)n + (1 + ω2)n

]
=

2n + (−ω2)n + (−ω)n

3
.

Hence the probability for |R| to be divisible by 3 is

1

3

[
1 +

(−ω2)n + (−ω)n

2n

]
.

Similarly, to find the probability for |R| to be 1 modulo 3, we
calculate:

1 + ω2ωk + ωω2k =

{
3, k ≡ 1(mod 3),
0, otherwise.

Hence ∑
k≡1(mod 3)

(
n

k

)
=

n∑
k=0

1 + ω2ωk + ωω2k

3

(
n

k

)
=

1

3

[
2n + ω2(1 + ω)n + ω(1 + ω2)n

]
=

2n + ω2(−ω2)n + ω(−ω)n

3
,

and the probability is
1

3

[
1− (−ω2)n+1 + (−ω)n+1

2n

]
.

(c)

P (|R| ≡ i(mod 4)) =



2n + (1 + i)n + (1− i)n

2n+2
, i = 0,

2n − i(1 + i)n + i(1− i)n

2n+2
, i = 1,

2n − (1 + i)n − (1− i)n

2n+2
, i = 2,

2n + i(1 + i)n − i(1− i)n

2n+2
, i = 3.

8



4 Conditional Probability

53.

(a) The required probability is P (B | A) = P (B ∩A)/P (A), where

P (A) =
1n + 2n + . . .+Nn

Nn(N + 1)

and

P (B ∩ A) =
1n+1 + 2n+1 + . . .+Nn+1

Nn+1(N + 1)
.

(b) The quantity

P (A) =
N∑
k=0

1

N + 1
·
(
k

N

)n
=

1n + 2n + . . .+Nn

Nn(N + 1)

is a Darboux sum of the function xn in the interval (0, 1), and

therefore it converges to the integral
∫ 1

0
xndx =

1

n+ 1
as N →

∞. Similarly, the expression 1n+1+2n+1+...+Nn+1

Nn+1(N+1)
converges to∫ 1

0
xn+1dx =

1

n+ 2
as N →∞. Thus, the limit of the quotient

as N →∞ is approximately n+1
n+2

.

57.

(a) Let An be the event that the n-th shot hits the target. We

have P (An) =
1

(2n)2
. The trials are independent, and thus the

probability of not passing the test is

P

(
∞⋂
n=1

An

)
=
∞∏
n=1

(
1− 1

(2n)2

)
=
∞∏
n=1

4n2 − 1

4n2
.

Now:∏
n

4n2 − 1

4n2
=

3

4
· 15

16
· 35

36
· . . . =

1 · 3
2 · 2

· 3 · 5
4 · 4

· 5 · 7
6 · 6

· . . . ,

and according to the hint in the question:

P

(
∞⋂
n=1

An

)
=

2

π
.
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(b) Let An be defined analogously to the previous part. We have

P (An) =
n

n+ 1
. The trials are independent, and thus the

probability of passing the first k trials is

P

(
k⋂

n=1

An

)
=

k∏
n=1

n

n+ 1
=

1

2
· 2

3
· 3

4
· . . . · k

k + 1
=

1

k + 1
.

The probability of passing the test is obtained by taking the
limit as k →∞:

P

(
∞⋂
n=1

An

)
= lim

k→∞
P

(
k⋂

n=1

An

)
= 0.

58.

(a) Let An be the event that the first round has ended after k
tosses. There are 63 possible outcomes in each toss of the dice,
6 of which will yield the same result. Thus

P (An) =

(
35

36

)n−1
· 1

36
.

Let Bk be the event that k distinct results were obtained in the
second round. In each toss of the second round, the probability

of all three receiving distinct results is 1 · 5

6
· 4

6
=

5

9
. Hence:

P (Bk|An) =

(
n

k

)(
5

9

)k (
4

9

)n−k
.

For k > 0:

P (Bk) =
∞∑
n=k

P (An)P (Bk|An) =
∞∑
n=k

(
35

36

)n−1
· 1

36
·
(
n

k

)(
5

9

)k (
4

9

)n−k

=
1

36

(
5

9

)k (
9

4

)k
· 36

35

∞∑
n=k

(
n

k

)(
4

9

)n(
35

36

)n

=
1

35
·
(

5

4

)k ∞∑
n=k

(
n

k

)(
35

81

)n
=

1

35
·
(

5

4

)k (
35

81

)k
(

1− 35

81

)k+1

=
1

35

(
5

4

)k
81 · 35k

46k+1
=

81

35 · 46

(
175

176

)k
.
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For k = 0:

P (B0) =
∞∑
n=1

P (An) ·
(

4

9

)n
=
∞∑
n=1

(
35

36

)n−1
1

36
·
(

4

9

)n

=
1

36
· 4

9

∞∑
`=0

(
4

9

)`(
35

36

)`
=

1

81
· 1

1− 35

81

=
1

46
.

(b) For k > 0 the required probability is:

P (An|Bk) =
P (An ∩Bk)

P (Bk)
=
P (Bk|An)P (An)

P (Bk)

=

(
n

k

)(5

9

)k (
4

9

)n−k (
35

36

)n−1
1

36

81

35 · 46

(
175

176

)k

=

(
n

k

)(5

4

)k (
4

9

)n(
35

36

)n
1

35

81

35 · 46

(
5 · 35

4 · 46

)k

=

(
n

k

) (
35

81

)n
81

46

(
35

46

)k =

(
n

k

)
35n−k · 46k+1

81n+1
.

For k = 0:

P (An|B0) =
P (B0|An)P (An)

P (B0)
=

(
4

9

)n
·
(

35

36

)n−1
1

36
1

46

=

(
4

9

)n
·
(

35

36

)n−1
· 23

18
=

(
35

81

)n−1
· 46

81
.

59.
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(a) P (X2 > 0) = 1− P (X2 = 0). We have

P (X2 = 0) = P (X1 = 0) + P (X1 = 1)P (X2 = 0|X1 = 1)

+ P (X1 = 2)P (X2 = 0|X1 = 2)

=
1

4
+

1

2
· 1

4
+

1

4
· 1

16
=

25

64
.

Thus

P (X2 > 0) = 1− P (X2 = 0) =
39

64
.

One may also find the probability directly:

P (X2 > 0) = P (X1 = 1)P (X2 > 0|X1 = 1)

+ P (X1 = 2)P (X2 > 0|X1 = 2)

=
1

2
· 3

4
+

1

4

(
1− 1

16

)
=

39

64
.

(b) We have:

P (X1 = 2|X2 = 1) =
P (X1 = 2 ∩X2 = 1)

P (X2 = 1)

=
P (X1 = 2)P (X2 = 1|X1 = 2)

P (X2 = 1)
.

First consider P (X2 = 1):

P (X2 = 1) = P (X2 = 1|X1 = 0)P (X1 = 0)

+ P (X2 = 1|X1 = 1)P (X1 = 1)

+ P (X2 = 1|X1 = 2)P (X1 = 2)

= 0 +
1

2
· 1

2
+

1

4
· 1

4
=

5

16
.

Thus

P (X1 = 2|X2 = 1) =
1
4
· 1
4

5
16

=
1

5
.

(c) We have:

P (X1 = 1|X3 > 0) =
P (X1 = 1 ∩X3 > 0)

P (X3 > 0)

=
P (X1 = 1)P (X3 > 0|X1 = 1)

P (X3 > 0)
.

First consider P (X3 > 0):

P (X2 = 1) = P (X3 > 0|X1 = 0)P (X1 = 0)

+ P (X3 > 0|X1 = 1)P (X1 = 1)

+ P (X3 > 0|X1 = 2)P (X1 = 2)

= 0 +
1

2
· P (X2 > 0) +

1

4
· (1− P (X3 = 0|X1 = 2)) .
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The reproduction of parent particles is independent. Thus, the
probability of having 2 parent particles at stage one and 0 at
stage three is the same as the probability of having 0 particles
at stage two in two identical experiments, starting with one
parent particle in each. Thus,

P (X3 = 0|X1 = 2) = P 2 (X2 = 0) =

(
25

43

)
=

625

46
.

Altogether

P (X1 = 1|X3 > 0) =
1
2
· 39
64

1
2
· 39
64

+ 1
4
·
(
1− 625

46

) =
128

217
.

66.

(f) By the principle of inclusion and exclusion:

1 ≥ P (A ∪B) = P (A) + P (B)− P (B ∩ A) = a+ b− P (B ∩ A) .

(j) As P (B ∩ A) ≥ 0

P (A ∩B) = 1− P (A ∪B) = 1− (P (A) + P (B)− P (B ∩ A))

= 1− a− b+ P (B ∩ A) ≥ 1− a− b.

68. Let EA be the event that A is telling the truth, and EDCBA
the event that D says that C says that B says that A is telling the
truth. Let EDCB be the event that D says that C says that B is
telling the truth. The probability in question is

P (EA|EDCBA) =
P (EA ∩ EDCBA)

P (EDCBA)
=
P (EA ∩ EDCB)

P (EDCBA)
.

Now EDCBA occurs if either all four tell the truth, or all four do not
tell the truth, or exactly two of the people tell the truth. In the
last of the three cases, there are

(
4
2

)
possibilities to choose the two

people telling the truth. Thus

P (EDCBA) =

(
1

3

)4

+

(
2

3

)4

+

(
4

2

)(
1

3

)2(
2

3

)2

=
41

81
.

Similarly, EDCB occurs if either all three tell the truth, or exactly
one of them does. Thus

P (EDCB) =

(
1

3

)3

+

(
3

1

)(
1

3

)1(
2

3

)2

=
13

27
.

Altogether,

P (EA|EDCBA) =

1

3
· 13

27
41

81

=
13

41
.
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5 Discrete Distributions

72.

(b) Let Xi be the number of the ball drawn in the i draw, for
i = 1, . . . , 5. Let X = min {X1, . . . , X5}. For k = 1, . . . , 9:

P (X = k) = P (X ≤ k)− P (X ≤ k − 1).

In the case the balls are chosen with replacement.

P (X ≤ k) = 1− P (X > k) = 1− P (X1 > k) · . . . · P (X5 > k)

= 1− (1− P (X1 ≤ k)) · . . . · (1− P (X5 ≤ k))

= 1−
(

1− k

13

)
· . . . ·

(
1− k

13

)
= 1−

(
13− k

13

)5

.

Thus

P (X = k) = P (X ≤ k)− P (X ≤ k − 1).

= 1−
(

13− k
13

)5

−

(
1−

(
13− (k − 1)

13

)5
)

=

(
14− k

13

)5

−
(

13− k
13

)5

.

On the other hand, if the balls are chosen without replacement.
Let 1 ≤ k ≤ 9. The event X = k occurs if the number on one of
the five balls drawn is k, and the numbers on all the other four
balls is larger than k, for which there are

(
13−k
4

)
possibilities.

As there are
(
13
5

)
possibilities for choosing the 5 numbers

P (X = k) =

(
13−k
4

)(
13
5

) .

76.

(c) For any c > 0 the values assumed by p(x) are non-negative. The
value of c is determined by the requirement that their sum be
1. First let us decompose the given rational function. Namely,
we are looking for constants a, b and d for which:

1

x(x+ 1)(x+ 2)
=
a

x
+

b

x+ 1
+

d

x+ 2
.

14



This gives:

a(x+ 1)(x+ 2) + bx(x+ 2) + dx(x+ 1) = 1.

Making the substitutions x = 0, x = −1 and x = −2 we obtain:

2a = 1, −b = 1, 2d = 1,

and therefore

a =
1

2
, b = −1, d =

1

2
.

Hence:

∞∑
x=1

1

x(x+ 1)(x+ 2)
=
∞∑
x=1

(
1/2

x
− 1

x+ 1
+

1/2

x+ 2

)
=

1/2

1
−1

2
+

1/2

2
=

1

4
.

Thus c = 4.

(d) We have:

1 =
∞∑
x=1

c

x(x+ 1)(x+ 3)
= c

∞∑
x=1

( 1
3

x
−

1
2

x+ 1
+

1
6

x+ 3

)
=

= c

(
1

3
(1 +

1

2
+

1

3
)− 1

2
(
1

2
+

1

3
) + 0

)
= c

(
1

3
· 11

6
− 1

2
· 5

6

)
= c · 7

36
.

Thus:

c =
36

7
.

For k = 1, 2, . . . the distribution function is given by

F (k) = P (X ≤ k) =
36

7

∑
x≤k

c

x(x+ 1)(x+ 3)

=
36

7

∑
x≤k

(
1
3

x
−

1
2

x+ 1
+

1
6

x+ 3
)

=
36

7

(
1

3
+

1

6
+

1

9
− 1

4
− 1

6
+
∑
x≤k

(
1
3

x+ 3
−

1
2

x+ 3
+

1
6

x+ 3
)

−
1
3

k + 1
−

1
3

k + 2
−

1
3

k + 3
+

1
2

k + 2
+

1
2

k + 3

)
=

36

7

(
7

36
−

1
3

k + 1
+

1
6

k + 2
+

1
6

k + 3

)
= 1− 6

7

(
2

k + 1
+

1

k + 2
+

1

k + 3

)
.

Thus for t ∈ R:

F (t) =

1− 6

7

(
2

btc+ 1
+

1

btc+ 2
+

1

btc+ 3

)
, t ≥ 1,

0, otherwise.
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(e) We have:

1 =
∞∑
k=0

∞∑
l=0

c

2k3l
= c

∞∑
k=0

1

2k

∞∑
l=0

1

3l
= c · 1

1− 1
2

· 1

1− 1
3

= c · 2 · 3

2
= 3c.

Thus:

c =
1

3
.

Let S =
{
x = 2k3l : k, l = 0, 1, . . .

}
. For k = 1, 2, . . . the dis-

tribution function is given by

F (k) = P (X ≤ k) =
1

3

∑
x∈S, x≤k

1

x
=

1

3

blg2(k)c∑
j=0

blg3( k2j )c∑
i=0

1

2j
1

3i

=
1

3

blg2(k)c∑
j=0

1

2j
·

1−
(
1
3

)1+blg3( k2j )c
1− 1

3

=
1

3

blg2(k)c∑
j=0

1

2j
· 3

2
·

(
1−

(
1

3

)1+blg3( k2j )c
)

=
1

2

blg2(k)c∑
j=0

1

2j
− 1

2

blg2(k)c∑
j=0

(
1

3

)1+blg3( k2j )c

= 1−
(

1

2

)1+blg2(k)c

− 1

2

blg2(k)c∑
j=0

(
1

3

)1+blg3( k2j )c
.

Thus for t ∈ R:

F (t) =


1−

(
1

2

)1+blg2(k)c

− 1

2

blg2(btc)c∑
j=0

(
1

3

)1+blg3( btc2j )c
, t ≥ 1,

0, otherwise.

77.

FX(x) = P (X ≤ x) =
∑
rk≤x

1

2k

At all the rational points, FX(x) is discontinuous. Indeed, let x = rk.
Then for every δ > 0

FX(rk)− FX(rk − δ) ≥ P (X = rk) =
1

2k
.

On the other hand, the function is continuous at each irrational
point x0. Being a distribution function, it is continuous from the
right. Thus, given any ε > 0, we need to show that there exists some

16



δ > 0 such that, if x ∈ (x0 − δ, x0), then |FX(x) − FX(x0)| < ε. In

fact there is only a finite number of k’s such that
1

2k
≥ ε. Denote the

largest such k by K. For 0 < δ < min {|x0 − rj| : 1 ≤ j ≤ K + 1},
and for every x ∈ (x0 − δ, x0) we have:

|FX(x)− FX(x0)| = P ({rj : rj ∈ (x, x0]}) ≤
∑

j>K+1

1

2j
=

1

2K+1
< ε.

6 Expectation

84.

(c) We have

E(X2) =
n∑
k=0

(
a
k

)(
b

n−k

)(
a+b
n

) · k2 = a
n∑
k=1

(
a−1
k−1

)(
b

n−k

)
a+ b

n
·
(
a+b−1
n−1

) · (k − 1 + 1)

=
an

a+ b

n−1∑
`=0

(
a−1
`

)(
b

n−1−`

)(
a+b−1
n−1

) · (`+ 1)

=
an

a+ b

n−1∑
`=0

(
a−1
`

)(
b

n−1−`

)(
a+b−1
n−1

) · `+
an

a+ b

n−1∑
`=0

(
a−1
`

)(
b

n−1−`

)(
a+b−1
n−1

) .

=
an

a+ b
E(L) +

an

a+ b

n−1∑
`=0

P (L = `),

where L ∼ H(n− 1, a− 1, b). Thus

E(X2) =
an

a+ b
· (a− 1) · (n− 1)

a+ b− 1
+

an

a+ b
· 1 (2)

=
an

a+ b

(
1 +

(a− 1) · (n− 1)

a+ b− 1

)
.

For E (X3) we have

E(X3) =
n∑
k=0

(
a
k

)(
b

n−k

)(
a+b
n

) · k3 = a
n∑
k=1

(
a−1
k−1

)(
b

n−k

)
a+ b

n
·
(
a+b−1
n−1

) · k2
=

an

a+ b

n−1∑
`=0

(
a−1
`

)(
b

n−1−`

)(
a+b−1
n−1

) · (`+ 1)2 =
an

a+ b
E((L+ 1)2).

Here L ∼ H(n−1, a−1, b). By the linearity of the expectation

E(X3) =
an

a+ b
·
(
E(L2) + 2E(L) + 1

)
.
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By (2)

E(L2) =
(a− 1) (n− 1)

a+ b− 1

(
1 +

(a− 2) · (n− 2)

a+ b− 2

)
.

Thus:

E(X3) =
an

a+ b

(
(a− 1) (n− 1)

a+ b− 1

(
1 +

(a− 2) · (n− 2)

a+ b− 2

)
+ 2

(a− 1) (n− 1)

a+ b− 1
+ 1

)
=

an

a+ b

(
(a− 1) (n− 1)

a+ b− 1

(
3 +

(a− 2) · (n− 2)

a+ b− 2

)
+ 1

)
.

(e)

E(X2) =
∞∑
k=r

(
k − 1

r − 1

)
pr (1− p)k−r · k2 =

r

p

∞∑
k=r

(
k

r

)
pr (1− p)k−r · k

=
r

p

∞∑
k′=r+1

(
k
′ − 1

(r + 1)− 1

)
pr+1 (1− p)k

′−r(r+1) ·
(
k
′ − 1

)
=
r

p
E (R− 1) ,

here R ∼ B(r + 1, p). Thus

E(X2) =
r

p

(
r + 1

p
− 1

)
=
r (r + 1− p)

p2
.

Similarly, for E (X3) we have

E(X3) =
r

p

∞∑
k′=r+1

(
k
′ − 1

(r + 1)− 1

)
pr+1 (1− p)k

′−r(r+1) ·
(
k
′ − 1

)2
=
r

p
E
(
(R− 1)2

)
=
r

p

(
E
(
R2
)
− 2E (R) + 1

)
=
r

p

(
(r + 1) (r + 2− p)

p2
− 2 · r + 1

p
+ 1

)
.

(f) We have

E(X2) =
∞∑
k=0

e−λλk

k!
· k2 = λ

∞∑
k=1

e−λλk−1

(k − 1)!
· (k − 1 + 1)

= λ
∞∑
k=1

e−λλk−1

(k − 1)!
· (k − 1) + λ

∞∑
k=1

e−λλk−1

(k − 1)!

= λ
∞∑
`=0

e−λλ`

`!
· `+ λ

∞∑
`=0

e−λλ`

`!
= λ2 + λ.

= λ · E(X) + λ
∞∑
`=0

P (X = `) = λ2 + λ.
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For E (X3):

E(X3) =
∞∑
k=0

e−λλk

k!
· k3 = λ

∞∑
k=1

e−λλk−1

(k − 1)!
· k2

= λ

∞∑
`=0

e−λλ`

`!
· (`+ 1)2 = λE((L+ 1)2),

where L ∼ P (λ). By the linearity of the expectation

E(X3) = λ ·
(
E(L2) + 2E(L) + 1

)
= λ

(
λ2 + λ+ 2λ+ 1

)
= λ

(
λ2 + 3λ+ 1

)
.

85.

(b)

E(X) =
n∑
k=0

2k
(
n

k

)
pk(1− p)n−k =

n∑
k=0

(
n

k

)
(2p)k(1− p)n−k

= (2p+ (1− p))n = (1 + p)n.

(c)

E(X) =
∑n

k=0 sin k ·
(
n

k

)
· pk(1− p)n−k =

∑n
k=0

eik − e−ik

2i
·
(
n

k

)
· pk(1− p)n−k

=
1

2i

n∑
k=0

(
n

k

)
· (pei)k(1− p)n−k − 1

2i

n∑
k=0

(
n

k

)
· (pe−i)k(1− p)n−k

=
1

2i

(
(pei + 1− p)n − (pe−i + 1− p)n

)
.

88.

(a) Let Ak, 1 ≤ k ≤ n, denote the event whereby k is the largest
number in the sample. Then

P (Ak) =
kn − (k − 1)n

Nn
,

and therefore

E(X) =
1

Nn

N∑
k=1

k(kn − (k − 1)n).

It follows that:

E(X) =
1

Nn

(
Nn+1 −

N−1∑
k=1

kn

)
= N −

N−1∑
k=1

(
k

N

)n
.

19



(b) Write E(X) in the form:

E(X) = N −N
N−1∑
k=0

1

N

(
k

N

)n
.

The sum on the right-hand side is a Darboux sum correspond-
ing to the integral

∫ 1

0
xndx. Hence E(X) behaves asymptoti-

cally as N − N
n+1

.

(c) As n becomes large, all the terms in the sum on the right hand
side of the expression for E(X) tend to 0, and therefore E(X)
tends to N .

91. The series yielding the expectation is:

∞∑
n=1

(−1)n−1
2n

n
· 1

2n
=
∞∑
n=1

(−1)n−1
1

n
.

However, while the series converges, it only converges conditionally.
Hence, E(X) does not exist.

94. Denote by D the distance between v1 and v2. Since P (D =
1) = p:

E(D) ≥ 1 · P (D = 1) + 2 · P (D ≥ 2) = p+ 2(1− p) = 2− p.

On the other hand, by the solution of Problem 50 we have

P (D ≥ 3) ≤ (n− 2) ·
(
1− p2

)n−2
,

and consequently:

E(D) ≤ 1 · P (D = 1) + 2 · P (D ≥ 2) + n · P (D ≥ 3)

≤ p+ 2(1− p) + n(n− 2) ·
(
1− p2

)n−2 −→
n→∞

2− p.

Thus E(D) −→
n→∞

2− p.

97.

(Algorithm a) Denote by “success” the event that an n-tuple forms
a permutation. The probability for this event is p = n!

nn
. The

number of selections of n-tuples is distributed G(p). Hence the
expected number of selections is

1

p
=
nn

n!
.

Since each selection consists of n integers, the expected num-
ber of random integers by this algorithm is nn+1

n!
. , which is

approximately
√

2π
n
en.
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(Algorithm b) Denote by Xi the number of steps required to obtain
the i-th digit, i = 1, . . . , n. Clearly, Xi ∼ G(1− (i− 1)/n), and
therefore

E(Xi) =
n− i+ 1

n
, i = 1, . . . , n.

The total number of selections is X =
∑n

i=1Xi, and hence:

E(X) =
n∑
i=1

E(Xi) =
n∑
i=1

n− i+ 1

n
= n

(
1 +

1

2
+

1

3
+ . . .+

1

n

)
.

This time the expected number of selections is only about
n log n.

7 Continuous Distributions

99.

(c) The variable assumes values in (0, 1), and therefore for t ∈
(0,∞) we have:

FX (t) = P (−lnU ≤ t) = P
(
U ≥ e−t

)
= 1− P

(
U < e−t

)
= 1− FU

(
e−t
)

= 1− e−t.

Thus:

FX (t) =

{
0, t < 0,

1− e−t, t ≥ 0.
fX (t) =

{
0, t < 0,

e−t, t ≥ 0.

Thus X ∼ Exp (1).

100.

(a) Sufficient conditions on θ1 and θ2 are: (i) θ1 + θ2 = 1, (ii)
θ1, θ2 ≥ 0. Suppose θ1 and θ2 satisfy conditions (i) and (ii).
Clearly θ1f1(x) + θ2f2(x) ≥ 0 for every x, and∫ ∞
−∞

(θ1f1(x) + θ2f2(x))dx = θ1

∫ ∞
−∞

f1(x)dx+ θ2

∫ ∞
−∞

f2(x)dx

= θ1 + θ2 = 1. (4)

Hence, θ1f1(x) + θ2f2(x) is a density function
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(b) Condition (i) is necessary. Suppose θ1 + θ2 6= 1. Then as in (4)∫ ∞
−∞

(θ1f1(x) + θ2f2(x))dx 6= 1.

On the other hand, condition (ii) is not necessary. For example,

let X ∼ U (0, 1) and Y ∼ U (0, 2). Then −1

2
fX(x) +

3

2
fY (x) is

a density function.

(c) Let f1, f2 be the density function of the distributions U (0, 1)
and U (1, 2), respectively. If θ1 < 0 or θ2 < 0, then θ1f1(x) +
θ2f2(x) is negative on (0, 1) or on (1, 2), respectively, and hence
is not a density function.

102.

(c)
f(x) = c(e−2|x| + e−3|x|), −∞ < x <∞.

Find c: Let X ∼ Exp(2), Y ∼ Exp(3). We have

1 = c

∫ ∞
−∞

(e−2|x| + e−3|x|)dx = 2c

∫ ∞
0

(e−2x + e−3x)dx

= c

∫ ∞
0

2e−2xdx+
2

3
c

∫ ∞
0

3e−3xdx

= c

∫ ∞
0

fX(x)dx+
2

3
c

∫ ∞
0

fY (x)dx.

= c · 1 +
2

3
c · 1 = c · 5

3
,

so that

c =
3

5
.

The distribution function F : For t < 0

F (t) =
3

5

∫ t

−∞
(e−2|x| + e−3|x|)dx =

3

5

∫ ∞
|t|

e−2xdx+
3

5

∫ ∞
|t|

e−3xdx

=
3

5
· 1

2

∫ ∞
|t|

2e−2xdx+
3

5
· 1

3

∫ ∞
|t|

3e−3xdx

=
3

10

∫ ∞
|t|

fX(x)dx+
1

5

∫ ∞
|t|

fY (x)dx

=
3

10
(1− FX(|t|)) +

1

5
(1− FY (|t|))

=
3

10
e−2|t| +

1

5
e−3|t|.
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For t ≥ 0

F (t) =
3

5

∫ t

−∞
(e−2|x| + e−3|x|)dx

=
3

5

∫ 0

−∞
(e−2|x| + e−3|x|)dx+

3

5

∫ t

0

(e−2x + e−3x)dx

=
3

10
+

1

5
+

3

10
FX(t) +

1

5
FY (t)

=
1

2
+

3

10
(1− e−2t) +

1

5
(1− e−3t).

Altogether,

F (t) =


3

10
e−2|t| +

1

5
e−3|t|, t < 0,

1

2
+

3

10
(1− e−2t) +

1

5
(1− e−3t), t ≥ 0.

105. Obviously, X is distributed Cauchy.

106.

(e) We have:

E (X) =
π

4

∫ 1

−1
x · cos(πx/2)dx

=
π

4

([
x

2

π
sin(πx/2)

]1
−1
− 2

π

∫ 1

−1
sin(πx/2)dx

)

=
π

4

(
2

π
[1 · 1− (−1) (−1)]− 2

π
· 2

π
[cos(πx/2)]1−1

)
= 0.

Note that the density function is even, so that the random
variable is symmetric around 0. Thus, the result was expected.

108.

(d)E(max(U1, U2)):∫ 1

0

∫ 1

0

max (x, y) dxdy =

∫ 1

0

(∫ y

0

ydx+

∫ 1

y

xdx

)
dy =

∫ 1

0

(
y2 +

[
x2

2

]1
y

)
dy

=

∫ 1

0

(
y2

2
+

1

2

)
dy =

[
y3

6
+
y

2

]1
0

=
2

3
.
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8 Variance and Covariance

118. We have

V (eU + e1−U) = V
(
eU
)

+ V
(
e1−U

)
+ 2Cov

(
eU , e1−U

)
.

As U ∼ U (0, 1), the variable 1−U is also U (0, 1)-distributed. Thus:

E
(
e1−U

)
= E

(
eU
)

=

∫ 1

0

exdx = e− 1,

E
(
e2−2U

)
= E

(
e2U
)

=

∫ 1

0

e2xdx =
1

2

(
e2 − 1

)
,

V
(
e1−U

)
= V

(
eU
)

=
1

2

(
e2 − 1

)
− (e− 1)2 = −e

2

2
+ 2e− 3

2
.

We also have

Cov
(
eU , e1−U

)
= E

(
eU · e1−U

)
− E

(
eU
)
E
(
e1−U

)
= E(e)− (e− 1)(e− 1) = e− (e− 1)2 .

Altogether

V (eU + e1−U) = 2

(
−e

2

2
+ 2e− 3

2

)
+ 2

(
e− (e− 1)2

)
= −3e2 + 10e− 5.

119.

(a) Let X denote the number of ones. Then X =
∑n

i=1Xi, where
Xi = 1 if the outcome of the ith roll is 1 and Xi = 0 otherwise.
Let Y and Yi, 1 ≤ i ≤ n, be defined similarly for the sixes.
Obviously, X, Y ∼ B(n, 1/6), so that:

E(X) = E(Y ) =
n

6
.

Now

E(XY ) = E

(
n∑
i=1

Xi ·
n∑
j=1

Yj

)

=
n∑

i,j=1

E(XiYj) =
∑
i 6=j

E(Xi)E(Yj) +
n∑
i=1

E(XiYi)

= n(n− 1) · 1

6
· 1

6
+

n∑
i=1

0 =
n(n− 1)

6
,

and therefore

Cov(X, Y ) =
n(n− 1)

36
− n

6
· n

6
= − n

36
.
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(b) Let X denote the number of ones. Then X =
∑n

i=1Xi, where
Xi = 1 if the outcome of the ith roll is 1 and Xi = 0 otherwise.
Let Y denote the sum of all outcomes and Yi, the outcome
of the ith roll, 1 ≤ i ≤ n. Obviously, Xi ∼ B(1, 1/6), and
Yi ∼ U [1, 6], so that:

E(Xi) =
1

6
, E (Yi) =

7

2
.

Now

Cov (Xi, Yi) = E (Xi · Yi)− E (Xi)E (Yi)

= P (Xi = Yi = 1) · 1 · 1− 1

6
· 7

2
=

1

6
− 7

12
= − 5

12
.

By the bilinearity of the covariance

Cov(X, Y ) = Cov

(
n∑
i=1

Xi,

n∑
j=1

Yj

)
=

n∑
i=1

n∑
j=1

Cov (Xi, Yj) .

From independence

Cov(X, Y ) =
n∑
i=1

Cov (Xi, Yi) = −5n

12
.

120.

(a) Obviously, X ∼ H(m, a, b), Y ∼ H(n, a, b), and therefore

E(X) =
ma

a+ b
, V (X) =

mab

(a+ b)2

(
1− m− 1

a+ b− 1

)
,

and

E(Y ) =
na

a+ b
, V (Y ) =

nab

(a+ b)2

(
1− n− 1

a+ b− 1

)
.

(b) Write X =
∑n

i=1Xi, where Xi = 1 if the ith ball is white and
Xi = 0 otherwise. Write Y =

∑n
i=1 Yi, analogously for the

second batch. Then

E(XY ) = E

(
m∑
i=1

Xi ·
n∑
j=1

Yj

)

=
m∑
i=1

n∑
j=1

E(XiYj) = mn
a(a− 1)

(a+ b)(a+ b− 1)
,

so that

Cov(X, Y ) = mn
a(a− 1)

(a+ b)(a+ b− 1)
− ma

a+ b
· na

a+ b

= − mnab

(a+ b)2(a+ b− 1)
.
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(c) The covariance is negative since the more white balls there are in
the first batch the less we should expect to have in the second.

9 Multi-Dimensional Distributions

126.

(a) The probability function of (X, Y ) is

P (X = x, Y = y) =

(
4

x

)(
4

y

)(
44

2− x− y

)
(

52

2

) , x, y ∈ {0, 1, 2} .

As displayed in the following table:

x\y 0 1 2

0

(
44
2

)(
52
2

) (
4
1

)(
44
1

)(
52
2

) (
4
2

)(
52
2

)
1

(
4
1

)(
44
1

)(
52
2

) (
4
1

)(
4
1

)(
52
2

) 0

2

(
4
2

)(
52
2

) 0 0

(b) We have

P (X ≥ Y ) = P (X = 0, Y = 0) + P (X = 1, Y = 0) + P (X = 2, Y = 0) + P (X = 1, Y = 1)

= 1− P (X < Y ) = 1− P (X = 0, Y = 1)− P (X = 0, Y = 2)

= 1−

(
4

1

)(
44

1

)
+

(
4

2

)
(

52

2

) =
44

51
.

(c) We have X, Y ∼ H (2, 4, 48), and thus

E(X) = E(Y ) =
2 · 4
52

=
2

13
.

We also have

E (XY ) =
2∑
i=0

2∑
j=0

i·j·P (X = i, Y = j) = 1·1·

(
4

1

)(
4

1

)
(

52

2

) =
8

663
.
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Altogether

Cov(X, Y ) =
8

663
− (

2

13
)2 = − 100

8619
.

We now present an alternative solution. Let Si be the number
of cards of type i that were drawn, i = 1, 2, . . . , 13. Consider
V (
∑13

i=1 Si). As we draw two cards exactly, the sum is constant,

so that V (
∑13

i=1 Si) = 0. On the other hand, calculating the
variance of the sum yields:

0 = V (
13∑
i=1

Si) =
13∑
i=1

V (Si) + 2
∑

1≤i<j≤13

Cov(Si, Sj).

By symmetry Cov(Si, Sj) = Cov(X, Y ) for all i, j. Thus:

13·12·Cov(X, Y ) = −
13∑
i=1

V (Si) = −13·2 · 4 · 48

522

(
1− 2− 1

52− 1

)
,

and

Cov(X, Y ) = − 100

8619
.

130.

(a)
U1 ∼ U(0, 1).

(b)
U2 ∼ U(0, 2).

(c) For 0 ≤ t ≤ 1 we have:

FX(t) = P (X ≤ t) = P (
√
U2/2 ≤ t) = P (U2 ≤ 2t2) =

2t2

2
= t2.

Since X assumes values only in [0, 1] this yields:

FX(t) =


0, t < 0,

t2, 0 ≤ t ≤ 1,

1, t > 1.

Therefore:

fX(t) =

{
2t, 0 ≤ t ≤ 1,

0, Otherwise.

(d) By the independence of U1 and U2

FV (t) = P (V ≤ t) = P (max(U1, U2) ≤ t) = P (U1 ≤ t, U2 ≤ t)

= P (U1 ≤ t) · P (U2 ≤ t) = FU1(t) · FU2(t),
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for t ∈ R. Thus:

FV (t) =



0, t < 0,
t2

2
, 0 ≤ t < 1,

t

2
, 1 ≤ t < 2,

1, t ≥ 2.

Consequently

fV (t) =


t, 0 ≤ t < 1,
1
2
, 1 ≤ t ≤ 2

0, Otherwise.

(e) By the independence of U1 and U2

FY (t) = P (Y ≤ t) = P (min(U1, U2) ≤ t) = 1− P (U1 ≥ t, U2 ≥ t)

= 1− P (U1 ≥ t) · P (U2 ≥ t) = 1− (1− FU1(t)) (1− FU2(t)) ,

for t ∈ R. Thus:

FY (t) =


0, t < 0,

1− (1− t) (2− t) 1
2

= 3t
2
− t2

2
, 0 ≤ t < 1,

1, t ≥ 1,

and

fY (t) =

{
3
2
− t, 0 ≤ t < 1,

0, Otherwise.

(f) We have
FW (t) = P (W ≤ t) = P (U1 · U2 ≤ t).

For 0 ≤ t ≤ 2, this gives:

FW (t) =
1

2
·2·1

2
+

∫ 1

t
2

∫ t
x

0

1

2
dydx =

t

2
+

∫ 1

t
2

t

2x
dx =

t

2

(
1− ln

t

2

)
.

Hence

FW (t) =


0, t < 0,
t
2

(
1− ln t

2

)
, 0 ≤ t < 2,

1, t ≥ 2,

and

fW (t) =

{
1
2

ln 2
t
, 0 ≤ t < 2,

0, Otherwise.

134.
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(a) c = 4
3π

.

(b) E(X2) = 7
18

.

(c) ρ(X, Y ) = 0.

136.

(a) Let S = {(x, y) : 0 ≤ x ≤ y ≤ 1}. Then:

1 =

∫∫
S

cxydxdy = c

∫ 1

0

∫ y

0

xydxdy = c

∫ 1

0

y · y
2

2
dy =

c

8
.

Thus c = 8.

(b) We have

E (X) =

∫∫
S

8xy · xdxdy = 8

∫ 1

0

∫ y

0

x2ydxdy = 8

∫ 1

0

y · y
3

3
dy =

8

15
,

E (Y ) =

∫∫
S

8xy · ydxdy = 8

∫ 1

0

∫ y

0

xy2dxdy = 8

∫ 1

0

y2 · y
2

2
dy =

4

5
,

E (XY ) =

∫∫
S

8xy · xydxdy = 8

∫ 1

0

∫ y

0

x2y2dxdy = 8

∫ 1

0

y2 · y
3

3
dy =

4

9
.

Thus:

Cov (X, Y ) =
4

9
− 8

15
· 4

5
=

4

225
.

(c) By bilinearity:

Cov(X + Y,X − Y ) = Cov(X,X)− Cov(X, Y ) + Cov(Y,X)− Cov(Y, Y )

= V (X)− V (Y ) .

Now

E
(
X2
)

=

∫∫
S

8xy · x2dxdy = 8

∫ 1

0

∫ y

0

x3ydxdy = 8

∫ 1

0

y · y
4

4
dy =

1

3
,

E
(
Y 2
)

=

∫∫
S

8xy · y2dxdy = 8

∫ 1

0

∫ y

0

xy3dxdy = 8

∫ 1

0

y3 · y
2

2
dy =

2

3
.

Thus

V (X) = E
(
X2
)
− E2 (X) =

1

3
−
(

8

15

)2

=
11

225
,

V (Y ) = E
(
Y 2
)
− E2 (Y ) =

2

3
−
(

4

5

)2

=
2

75
,

and

Cov(X + Y,X − Y ) =
11

225
− 2

75
=

1

45
.

29



(d) We have

V (X + Y ) = V (X) + V (Y ) + 2Cov(X, Y )

=
11

225
+

2

75
+ 2 · 4

225
=

1

9
.

137.

(a) Let S = {(x, y) : x, y ≥ 0, 1 ≤ x2 + y2 ≤ 4}. Then:

1 =

∫∫
S

c√
x2 + y2

dxdy = c

∫ 2

1

∫ π
2

0

1

r
·rdθdr = c

∫ 2

1

1dr·
∫ π

2

0

1dθ = c·π
2
.

Thus c = 2
π
.

(b) We have:

E (X) =

∫∫
S

2
π√

x2 + y2
· xdxdy =

2

π

∫ 2

1

∫ π
2

0

r · cosθdθdr

=
2

π

∫ 2

1

rdr ·
∫ π

2

0

cosθdθ =
2

π
· 3

2
=

3

π
.

(c) We have:

E
(
X2
)

=

∫∫
S

2
π√

x2 + y2
· x2dxdy =

2

π

∫ 2

1

∫ π
2

0

r2 · cos2θdθdr

=
2

π

∫ 2

1

r2
∫ π

2

0

cos2θ + 1

2
dθdr =

2

π
· 7

3
· π

4
=

7

6
.

Thus:

V (X) =
7

6
− 9

π2
.

(d)We have

ρ(X, Y ) =
Cov (X, Y )

σX · σY
=
E (XY )− E (X)E (Y )

σX · σY
.

By symmetry,

E (X) = E (Y ) =
3

π

and

σX = σY =
√
V (X) =

√
7

6
− 9

π2
.
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Now:

E (XY ) =

∫∫
S

2
π√

x2 + y2
· xydxdy =

2

π

∫ 2

1

∫ π
2

0

r · cosθ · r · sinθdθdr

=
2

π

∫ 2

1

r2dr

∫ π
2

0

cosθsinθdθ =
2

π
· 7

3
· 1

2

∫ π
2

0

sin2θdθ =
7

3π
.

Thus

ρ(X, Y ) =
7
3π
− 9

π2

7
6
− 9

π2

=
14π − 54

7π2 − 54
≈ −0.6639.

10 Independence

145.

(a) Note that Xi ∼ U [1, 6] for i = 1, 2. We have:

E (S) = E (X1 +X2) = E (X1) + E (X2) =
7

2
+

7

2
= 7.

The random variable |X1 −X2| receives the values 0, . . . , 5 with
probabilities:

d 0 1 2 3 4 5

p 6
36

10
36

8
36

6
36

4
36

2
36

Thus

E (D) = E (|X1 −X2|) =
5∑
i=0

i · P (|X1 −X2| = i) =
35

18
.

As X1 and X2 have the same distribution

E (SD) = E ((X1 +X2) |X1 −X2|) = E (X1 · |X1 −X2|) + E (X2 · |X1 −X2|)
= 2E (X1 · |X1 −X2|) .

The probability function of the variable (X1, |X1 −X2|) is given
in the following table:

x1 \ d 0 1 2 3 4 5

1 1
36

1
36

1
36

1
36

1
36

1
36

2 1
36

1
18

1
36

1
36

1
36

0
3 1

36
1
18

1
18

1
36

0 0
4 1

36
1
18

1
18

1
36

0 0
5 1

36
1
18

1
36

1
36

1
36

0
6 1

36
1
36

1
36

1
36

1
36

1
36
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Thus,

E (SD) = 2
6∑
i=1

5∑
j=0

i · j · P (X1 = i, |X1 −X2| = j) =
245

18
.

Therefore

E (SD) =
245

18
= 7 · 35

18
= E (S)E (D) .

(b) We have

P (X1 +X2 = 7, |X1 −X2| = 0) = 0 6= 2

36
· 6

36
= P (X1 +X2 = 7)P (|X1 −X2| = 0) .

Thus, S and D are not independent.

152.

(a)

P (X = k, Y = m) =
e−λλk

k!

1

2k

(
k

m

)
.

(b) It is easy to see thay Y ∼ P (λ
2
), and in particular E(Y ) = λ

2

and V (Y ) = λ
2
.

(c) We have

ρ(X, Y ) =
Cov (X, Y )

σX · σY
=
E (XY )− E (X)E (Y )

σX · σY
.

By (a) and (b):

E (X) = λ, E (Y ) =
λ

2
,

σX =
√
λ, σY =

√
λ

2
.

Also:

E (XY ) =
∞∑
i=0

i∑
j=0

i · j · P (X = i, Y = j) =
∞∑
i=0

i · e−λλ
i

i!

i∑
j=0

(
i

j

)(
1

2

)i
· j

=
∞∑
i=0

i · e−λλ
i

i!
E(Yi),

where Yi ∼ B
(
i, 1

2

)
. Hence:

E (XY ) =
1

2

∞∑
i=0

i2 · e−λλ
i

i!
=

1

2
E(X2) =

1

2

(
λ+ λ2

)
.
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Altogether:

ρ(X, Y ) =
1
2

(λ+ λ2)− λ · λ
2√

λ ·
√

λ
2

=
1√
2
≈ 0.707.

155.

(c) We have

E (sin 2πX) =

∫ 1

0

sin 2πxdx = 0,

E (cos 2πX) =

∫ 1

0

cos 2πxdx = 0,

E (sin 2πX · cos 2πX) =

∫ 1

0

sin 2πx · cos 2πxdx = 0,

Thus ρ(sin 2πX, cos 2πX) = 0. Note that Y1 = sin(2πX) and
Y2 = cos(2πX) are not independent but ρ(Y1, Y2) = 0.

11 Normal Distribution

160.

(a) We have:

1 = c

∫ ∞
−∞

(
2e−x

2

+ 3e−2x
2
)
dx = 2c

∫ ∞
−∞

e−x
2

dx+ 3c

∫ ∞
−∞

e−2x
2

dx

= 2c

∫ ∞
−∞

e−
t2

2 · 1√
2
dt+ 3c

∫ ∞
−∞

e−
t2

2 · 1

2
dt = c

(
2√
2
·
√

2π +
3

2
·
√

2π

)
= c
√
π

(
2 +

3√
2

)
.

Alternatively, we note that∫ ∞
−∞

e−x
2

dx =

√
2π
(

1/
√

2
)2 ∫ ∞

−∞

1√
2π(1/

√
2)2

e
− x2

2(1/
√
2)2 dx

=

√
2π
(

1/
√

2
)2 ∫ ∞

−∞
fY1(x)dx =

√
π,
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where Y1 ∼ N(0,
1

2
). Similarly∫ ∞

−∞
e−2x

2

dx =

√
2π (1/2)2

∫ ∞
−∞

1√
2π(1/2)2

e
− x2

2(1/2)2 dx

=

√
2π (1/2)2

∫ ∞
−∞

fY2(x)dx =

√
π

2
,

where Y2 ∼ N(0,
1

4
). Thus

1 = 2c

∫ ∞
−∞

e−x
2

dx+ 3c

∫ ∞
−∞

e−2x
2

dx

= 2c
√
π

∫ ∞
−∞

fY1(x)dx+ 3c

√
π

2

∫ ∞
−∞

fY2(x)dx = c
√
π

(
2 +

3√
2

)
.

Thus

c =

(√
π

(
2 +

3√
2

))−1
=

1√
π
·

1 ·
(

2− 3√
2

)
(

2 + 3√
2

)(
2− 3√

2

) =
1√
π
· 4− 3

√
2

2 ·
(
4− 9

2

)
=

1√
π
·
(

3
√

2− 4
)
.

(b) We have:

E(X) = c

∫ ∞
−∞

x
(

2e−x
2

+ 3e−2x
2
)
dx = 0,

and

V (X) = E(X2) = c

∫ ∞
−∞

x2
(

2e−x
2

+ 3e−2x
2
)
dx.

= 2c
√
π

∫ ∞
−∞

x2fY1(x)dx+ 3c

√
π

2

∫ ∞
−∞

x2fY1(x)dx

= 2c
√
πE(Y 2

1 ) + 3c

√
π

2
E(Y 2

2 )

= 2c
√
πV (Y1) + 3c

√
π

2
V (Y2) = 2c

√
π · 1

2
+ 3c

√
π

2
· 1

4

= c

(√
π +

3

4
·
√
π

2

)
=

(√
π +

3

4
·
√
π

2

)
· 1√

π
·
(

3
√

2− 4
)

= 3
√

2− 3√
2
− 7

4
=

6
√

2− 7

4
.

161. By induction. For k = 1

E
(
Z2
)

= V (Z) + E2(Z) = 1 = (2 · 1− 1)!!.
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Now assume that E
(
Z2k
)

= (2k − 1)!!. For k + 1 we integrate by
parts:

E
(
Z2k+2

)
=

1√
2π

∫ ∞
−∞

x2k+2e−
x2

2 dx =
1√
2π

∫ ∞
−∞

x2k+1 · xe−
x2

2 dx

=
1√
2π

[
−x2k+1e−

x2

2

]∞
−∞

+
2k + 1√

2π

∫ ∞
−∞

x2ke−
x2

2 dx

= (2k + 1) · (2k − 1)!! = (2k + 1)!!.

162. For E(|X|) we have:

E (|X|) =
1√
2π

∫ ∞
−∞
|x|e−

x2

2 dx =
2√
2π

∫ ∞
0

xe−
x2

2 dx.

=
2√
2π

[
−e−

x2

2

]∞
0

=
2√
2π

=

√
2

π
.

For E(|X|3) we have:

E
(
|X|3

)
=

1√
2π

∫ ∞
−∞
|x|3e−

x2

2 dx =
2√
2π

∫ ∞
0

x2 · xe−
x2

2 dx.

=
2√
2π

[
−x2e−

x2

2

]∞
0

+
4√
2π

∫ ∞
−∞

xe−
x2

2 dx = 2

√
2

π
.

163. Let us first calculate the third moment for Z ∼ N(0, 1):

E
(
Z3
)

=
1√
2π

∫ ∞
−∞

x3e−
x2

2 dx =
1√
2π

∫ ∞
−∞

x2 · xe−
x2

2 dx

=
1√
2π

[
−x2e−

x2

2

]∞
−∞

+
2√
2π

∫ ∞
−∞

xe−
x2

2 dx = 0.

For X ∼ N(µ, σ2), let Z =
X − µ
σ

. Recall that Z ∼ N(0, 1). Now

X = σZ + µ, and therefore:

E(X3) = E
(
(σZ + µ)3

)
= E

(
Z3 + 3σ2µZ2 + 3σµ2Z + µ3

)
= σ3 · E

(
Z3
)

+ 3σ2µ · E
(
Z2
)

+ 3σµ2 · E (Z) + µ3.

Now, E (Z) = 0, E(Z2) = V (Z) = 1, Altogether

E(X3) = 3σ2µ+ µ3.

35



12 Limit Theorems

164. As g is increasing, P (|X| ≥ t) = P (g (|X|) ≥ g (t)). As g is
positive, g (t) > 0, and by Markov’s inequality

P (|X| ≥ t) = P (g (|X|) ≥ g (t)) ≤ E (g (|X|))
g (t)

.

165. The variables are independent, and thus Y1X1, . . . , YnXn are
independent. We have E(Xi) = µ, V (Xi) = σ2, E(Yi) = 1 · 1

2
+

(−1) · 1
2

= 0 and V (Yi) = 12 · 1
2

+ (−1)2 · 1
2

= 1. Thus:

E(XiYi) = E(Xi)E(Yi) = 0,

and

V (XiYi) = E((XiYi)
2) = E(X2

i )E(Y 2
i ) = σ2 + µ2.

By the central limit theorem

lim
n→∞

P

 1
n
Sn√

σ2 + µ2

√
n

≤ x

 = Φ(x), −∞ < x <∞.

Thus, as n → ∞, the distribution function of

1√
n
Sn√

σ2 + µ2
tends to

that of a standard normal variable. Hence, the distribution function
of 1√

n
Sn tends to that of

√
σ2 + µ2Z, where Z ∼ N(0, 1), which is

the distribution function of an N(0, σ2 + µ2)-distributed variable.

166. The mean and the variance of the population are

µ =
1

3
· 3 +

1

3
· 5 +

1

3
· 8 =

16

3
,

and

σ2 =
1

3
(9 + 25 + 64)−

(
16

3

)2

=
38

9
.

Let X1, . . . , X54 be the sample. The mean and the variance of the
population are

µ =
1

3
· 3 +

1

3
· 5 +

1

3
· 8 =

16

3
,

and

σ2 =
1

3
(9 + 25 + 64)−

(
16

3

)2

=
38

9
.
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Let X1, . . . , X54 be the sample. By the central limit theorem

P
(
5 ≤ X54 ≤ 5.2

)
= P

(
5− µ
σ/
√

54
≤ X54 − µ

σ/
√

54
≤ 5.2− µ
σ/
√

54

)

= P

(
5− 16

3√
38/3
√

54
≤

X54 − 16
3√

38/3
√

54
≤

5.2− 16
3√

38/3
√

54

)

≈ Φ

(
15.6− 16√

38/
√

54

)
− Φ

(
15− 16√
38/
√

54

)

= Φ

(
−0.4

0.8388

)
− Φ

(
−1

0.8388

)

= 1− Φ

(
0.4

0.8388

)
− 1 + Φ

(
1

0.8388

)

= Φ (1.1921)− Φ (0.4768) = 0.88− 0.68 = 0.20.

167. The mean and the variance of the population are

µ = E(Xi) =
1

2
,

σ2 = V (Xi) =
1

4
.

Let X1, . . . , X200 be the sample. For d > 0, the central limit theorem
gives

P
(
|X200 − µ| > d

)
= 1− P

(
|X200 − µ| ≤ d

)

= 1− P

(
−d

1/2
√

200
≤
X200 − 1

2

1/2
√

200
≤ d

1/2
√

200

)

≈ 1−
(

Φ
(

20
√

2 · d
)
− Φ

(
−20
√

2 · d
))

= 1−
(

2Φ
(

20
√

2 · d
)
− 1
)

= 2− 2Φ(20
√

2 · d).

We want to choose d so that the right-hand side will be approxi-
mately 0.05. Thus Φ(20

√
2 ·d) ≈ 0.975, so that 20

√
2 ·d ≈ 1.96, and

therefore d ≈ 0.069.
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13 The Moment Generating Function

168.

(b) We have:

Ψ(t) = E(etX) =
∞∑
i=0

et·ie−λ
λi

i!
= e−λ

∞∑
i=0

(etλ)
i

i!

= e−λee
tλ = eλ(e

t−1).

(c) We have:

Ψ(t) = E(etX) =
∞∑
i=1

et·i(1− p)i−1p = pet
∞∑
i=1

et(i−1)(1− p)i−1

= pet
∞∑
i=1

(
et(1− p)

)i−1
= pet

∞∑
j=0

(
et(1− p)

)j
.

The expectation will exist if |et(1− p)| < 1. In that case

Ψ(t) =
pet

1− et(1− p)
=

p

e−t + p− 1
.

(d) We have:

Ψ(t) = E(etU) =

∫ b

a

etx · 1

b− a
dx =

1

b− a

[
1

t
etx
]b
a

=
etb − eta

t(b− a)
.

169. The variable X + Y assumes the values n = 0, 1, 2, . . . with
probabilities

P (X + Y = n) =
∞∑
k=0

P (Y = k) · P (X + Y = n|Y = k)

=
n∑
k=0

P (Y = k) · P (X = n− k|Y = k)

=
n∑
k=0

P (Y = k) · P (X = n− k)

=
n∑
k=0

e−λ2
λk2
k!
· e−λ1 λn−k1

(n− k)!
=

1

n!
· e−(λ1+λ2)

k∑
n=0

n!λk2λ
n−k
1

k!(n− k)!

=
e−(λ1+λ2)

n!

n∑
k=0

(
n

k

)
λk2λ

n−k
1 =

(λ1 + λ2)
n

n!
e−(λ1+λ2).
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Thus X + Y ∼ P (λ1 + λ2). By the solution of Problem 168.(c)

Ψ(t) = e(λ1+λ2)(e
t−1).

170. We have:

Ψ(t) = E(etU) =

∫ 1

0

etxdx =

[
1

t
etx
]1
0

=
1

t

(
et − 1

)
.

Using the Maclaurin expansion of et we get

Ψ(t) =
1

t

(
−1 + 1 + t+

t2

2!
+
t3

3!
+ . . .

)
= 1 +

t

2!
+
t2

3!
+ . . . .

Now E(Xn) = Ψ(n)(0) is the coefficient of tn

n!
in the series. Thus,

E(Xn) = Ψ(n)(0) = 1
n+1

. Consequently

V (Xn) = E(X2n)− E2(Xn) =
1

2n+ 1
−
(

1

n+ 1

)2

.

171.

(c) Let S = |X − Y |. We have:

FS(s) = P (|X − Y | ≤ s) = P (−s ≤ X − Y ≤ s).

By independence, the joint density function is given by

fX,Y (x, y) =

{
1
a2
, (x, y) ∈ [0, a]2 ,

0, otherwise.

As the density function is constant in the region where it is
non-zero, we have

FS(s) =
|
{

(x, y) : (x, y) ∈ [0, a]2 , −s ≤ x− y ≤ s
}
|

| [0, a]2 |
,

where we have denoted here by |A| the area of a set A ⊆ R2.
For 0 ≤ s ≤ a2 we have

FS(s) =

(
a2 − 2 · (a− s)2

2

)
· 1

a2
= 1−

(
1− s

a

)2
=

2s

a
− s2

a2
.

Thus

FS(s) =


0, s < 0,
2s

a
− s2

a2
, 0 ≤ s < a,

1, s ≥ a,

fS(s) =


2

a
− 2s

a2
, 0 ≤ s ≤ a,

0, otherwise.
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The moment generating function of S is:

Ψ(t) = E(etX) =

∫ a

0

etx
(

2

a
− 2x

a2

)
dx =

[
2

a
· 1

t
etx
]a
0

− 2

a2

∫ a

0

xetxdx

=
2

at

(
eta − 1

)
− 2

a2

([
1

t
· xetx

]a
0

−
∫ a

0

1

t
etxdx

)
=

2

at

(
eta − 1

)
− 2

at
eta +

2

a2
· 1

t2
[
etx
]a
0

=
2

a2t2
(
eta − 1

)
− 2

at
.

(d) Let U1, U2 ∼ (0, 1), and W = U1U2. For 0 ≤ t ≤ 1 we have:

FW (t) = t+

∫ 1

t

∫ t
x

0

dydx = t+

∫ 1

t

t

x
dx = t (1− ln t) .

We have:

FW (t) =


0, t < 0,

t (1− ln t) , 0 ≤ t < 1,

1, t ≥ 1,

and

fW (t) =

{
− ln t, 0 ≤ t ≤ 1,

0, otherwise.

By definition, the moment generating function of W is:

ΨW (t) = E(etX) = −
∫ 1

0

etx lnxdx.

If the moment generating function exists, then Ψ
(n)
W (0) = E(W n).

By the independence of U1, U2, the n-th moment of W is:

E (W n) = E (Un
1 U

n
2 ) = E (Un

1 )E (Un
2 ) =

1

n+ 1
· 1

n+ 1
=

1

(n+ 1)2
.

Thus:

ΨW (t) =
∞∑
n=0

tn

(n+ 1)2 · n!
.
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Alternatively, by definition:

ΨW (t) = lim
δ→0
−
∫ 1

δ

etx lnxdx

= lim
δ→0
−

([
etx · lnx

t

]1
δ

−
∫ 1

δ

etx

tx
dx

)

= lim
δ→0
−

([
etx · lnx

t

]1
δ

−
∫ 1

δ

1

tx

∞∑
i=0

(xt)i

i!
dx

)

= lim
δ→0
−

([
etx · lnx

t

]1
δ

−
∫ 1

δ

1

xt
dx−

∫ 1

δ

∞∑
i=1

(xt)i−1

i!
dx

)

= lim
δ→0
−

([
etx · lnx

t

]1
δ

−
[

lnx

t

]1
δ

−
∞∑
i=1

∫ 1

δ

(xt)i−1

i!
dx

)

= lim
δ→0
−

(
ln δ

(
1− etδ

)
t

−
∞∑
i=1

[
xi · ti−1

i · i!

]1
δ

)
.

Now

lim
δ→0

∞∑
i=1

[
xi · ti−1

i · i!

]1
δ

= lim
δ→0

(
∞∑
i=1

ti−1

i · i!
−
∞∑
i=1

δi · ti−1

i · i!

)

=
∞∑
i=0

ti

(i+ 1) · (i+ 1)!
=
∞∑
i=0

ti

(i+ 1)2 · i!
,

and by L’hopital’s rule

lim
δ→0

ln δ(1− etδ)
t

= lim
δ→0

ln δ

t · 1

1− etδ
= lim

δ→0

1/δ

t · −1

(1− etδ)2
· (−etδ) · t

= lim
δ→0

(1− etδ)2

t2 · δ · etδ
= lim

δ→0

2(1− etδ)(−tetδ)
t2 · etδ + t2 · δ · etδ · t

= 0.

Thus:

ΨW (t) =
∞∑
n=0

tn

(n+ 1)2 · n!
.

Now XY is distributed as a2W , and therefore the moment gen-
erating function of XY is given by

ΨXY (t) = ΨW (a2t) =
∞∑
n=0

(a2t)n

(n+ 1)2 · n!
.
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