
Final #2

Mark the correct answer in each part of the following questions.

1. Reuven and Shimon play the following infinite-stage game. At each
stage k, they toss 2k coins. If the sequence is palindromic (namely,
for each 1 ≤ j ≤ k, the result of the j-th toss is the same as that of
the (2k − j + 1)-st toss), Reuven gets from Shimon k shekels. If the
sequence is anti-palindromic (namely, for each 1 ≤ j ≤ k, the result of
the j-th toss is the opposite of the result of the (2k − j + 1)-st toss),
Shimon gets from Reuven k − 1 shekels. Finally, if all 2k tosses yield
the same result, Shimon gets from Reuven k(k − 1) · 3k shekels. (Note
that, in the latter case, Reuven also gets from Shimon k shekels.) Let
R be the total revenues of Reuven and S the total revenues of Shimon.
(Namely, R ignores the losses of Reuven and S ignores those of Shimon.
For example, suppose that for k = 1 the resulting sequence was HT,
for k = 2 it was HTTH, for k = 3 it was HHHHHH, and for no k ≥ 4
did any of the players win anything. Then R = 0 + 2 + 3 = 5 and
S = (1− 1) + 0 + 3 · 2 · 33 = 162.)

(a) Markov’s inequality, applied to R, yields:

(i) P (R ≥ 10) ≤ 0.1.

(ii) P (R ≥ 10) ≤ 0.2.

(iii) P (R ≥ 10) ≤ 0.3.

(iv) P (R ≥ 10) ≤ 0.4.

(v) None of the above.

(b) Let µS = E(S). Then µS =

(i) 73.

(ii) 97.

(iii) 113.
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(iv) 145.

(v) None of the above.

In the next 2 parts, assume that Reuven and Shimon repeat the
whole infinite game infinitely many times.

(c) Let S1, S2, . . . , Sn be the revenues of Shimon in the first n games,

where n is large. We would like to estimate P
(
S̄n ≤ µS + 1

2
√
n

)
using the central limit theorem.

(i) P
(
S̄n ≤ µS + 1

2
√
n

)
≈ Φ(1/2).

(Here, Φ denotes the standard normal distribution function.)

(ii) P
(
S̄n ≤ µS + 1

2
√
n

)
≈ Φ(1).

(iii) P
(
S̄n ≤ µS + 1

2
√
n

)
≈ Φ(2).

(iv) It is impossible to use the central limit theorem to estimate
the probability in question as the conditions of the theorem
are not satisfied.

(v) None of the above.

(d) Let N be the number of the first game in which both Reuven and
Shimon had positive revenues. The distribution of N is:

(i) Poissonian.

(ii) approximately, but not exactly, Poissonian.

(iii) geometric.

(iv) negative binomial, but not geometric.

(v) None of the above.

2. X is a continuous random variable, distributed uniformly with param-
eters 0 and 1. Let Y = X−1/10 and W = b1/Xc. (Here, b·c is the
integer part function; for example, if X = 3/20, then W = 6.)

(a) The density function fY is given by:
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(i)

fY (y) =

{
10y−11, y ≥ 1,

0, otherwise.

(ii)

fY (y) =

{
10y−1/11, y ≥ 1,

0, otherwise.

(iii)

fY (y) =

{
9y−10, y ≥ 1,

0, otherwise.

(iv)

fY (y) =

{
9y−1/10, y ≥ 1,

0, otherwise.

(v) None of the above.

(b) The probability that W is odd is

(i) non-existent, as the series defining it converges conditionally
and not absolutely.

(ii) ln 2.

(iii) 2/e.

(iv) 2/π.

(v) None of the above.

(c) V (Y ) =

(i)
5

324
.

(ii)
15

324
.

(iii)
25

324
.

(iv)
35

324
.
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(v) None of the above.

(d) Denote

an = ρ
(
e−Y

2

, ln (Y n)
)
, n = 1, 2, . . . .

The sequence (an)∞n=1 is

(i) increasing and converges to a negative number.

(ii) decreasing and converges to a number greater than −1.

(iii) is constant.

(iv) of some sign for all even n and of the opposite sign for all
odd n.

(v) None of the above.

3. Suppose that (X, Y ) is a two-dimensional continuous random variable
with joint density function, defined by

fX,Y (x, y) =


x+ cy, x, y ≥ 0, x2 + y2 ≤ 1,

0, otherwise,

for an appropriate constant c.

(a) c =

(i) 1.

(ii) 2.

(iii) 3.

(iv) 4.

(v) None of the above.

(b) P
(
X > 4Y

3
|X > Y

2

)
=

(i)
1

6
.
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(ii)
1

3
.

(iii)
1

2
.

(iv)
2

3
.

(v) None of the above.

(c) E
(
e−(X2+Y 2)

)
=

(i) − 3

2e
−
√
π

2
+
√
πΦ(
√

2).

(Here, Φ denotes the standard normal distribution function.)

(ii) −1

e
− 3
√
π

4
+

3
√
πΦ(
√

2)

4
.

(iii) − 3

2e
− 3
√
π

4
+
√
πΦ(
√

2).

(iv) −1

e
−
√
π

2
+

3
√
πΦ(
√

2)

4
.

(v) None of the above.

(d) Let Θ = arctg Y
X

. The distribution function FΘ is given by:

(i) FΘ(θ) =



0, θ < 0,

sin θ − 2 cos θ + 2

3
, 0 ≤ θ ≤ π

2
,

1, θ > π/2.
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(ii) FΘ(θ) =



0, θ < 0,

sin θ − 3 cos θ + 3

4
, 0 ≤ θ ≤ π

2
,

1, θ > π/2.

(iii) FΘ(θ) =



0, θ < 0,

sin θ − 2
√

2 cos θ + 2
√

2

1 + 2
√

2
, 0 ≤ θ ≤ π

2
,

1, θ > π/2.

(iv) FΘ(θ) =



0, θ < 0,

sin θ − 3
√

2 cos θ + 3
√

2

1 + 3
√

2
, 0 ≤ θ ≤ π

2
,

1, θ > π/2.

(v) None of the above.

4. Let (Xk)
∞
k=1 be sequence of independent Exp(2)-distributed random

variables.

(a) Let n be a large positive integer. Let us say (for the purposes of
this question only) that an index i in the range between 1 and n
is good if Xi ≤ 1/n; an index i in the range between n+ 1 and 2n
is good if 1/2n ≤ Xi ≤ 1/n. Let N be the number of good indices
in the whole range between 1 and 2n. Then P (N = 1) ≈

(i)
2

e2
.
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(ii)
3

2e3/2
.

(iii)
1

e
.

(iv)
1

2
√
e
.

(v) None of the above.

(b) Recall the theorem proved in class, according to which a sequence
of independent identically distributed random variables, with fi-
nite expectation and variance, satisfies the weak law of large num-
bers. Here we would like to find out to which of the four sequences
(Yk1)∞k=1, (Yk2)∞k=1, (Yk3)∞k=1, (Yk4)∞k=1, defined below, the theorem
applies to prove that it satisfies the weak law of large numbers.
(Note: We are not asking which of the sequences satisfies in fact
the law. We only ask to which of them the theorem applies.)

(i) Yk1 = Xk +Xk+1, 1 ≤ k <∞.

(ii) Yk2 = Xk ·Xk+1, 1 ≤ k <∞.

(iii) Yk3 = eXk/2, 1 ≤ k <∞.

(iv) Yk4 = eXk , 1 ≤ k <∞.

(v) None of the above.

(c) For large n, we have P
(∑n

i=1Xi ≤ n
2
−
√
n
)
≈

(i) 1− Φ(2).

(ii) 1− Φ(1/2).

(iii) Φ(1/2).

(iv) Φ(2).

(v) None of the above.
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Solutions

1. (a) Let Rk be Reuven’s revenue at the k-th stage of the game. Then:

Rk =

{
k, the word accepted is a palindrome,

0, otherwise.

Notice that R =
∑∞

k=1 Rk. In order to use Markov’s inequality,
first find E (R) :

E (R) = E

(
∞∑
k=1

Rk

)

=
∞∑
k=1

E (Rk)

=
∞∑
k=1

k · P (Rk = k)

=
∞∑
k=1

k · 1

2k
.

Now the right-hand side is the expectation of a G(1
2
)-distributed

random variable. Hence, E (R) = 2. Applying Markov’s inequal-
ity, we bound the probability in question:

P (R ≥ 10) ≤ E (R)

10

=
2

10
.

Thus, (ii) is true.
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(b) Similarly to (a), let Sk be Shimon’s revenue at the k-th stage of
the game. Then:

Sk =


k − 1, the obtained sequence is an anti-palindrome,

k(k − 1)3k, all 2k tosses yield the same result,

0, otherwise.

Applying similar calculations:

E (S) = E

(
∞∑
k=1

Sk

)

=
∞∑
k=1

E (Sk)

=
∞∑
k=1

(k − 1) · P (Sk = k − 1) + k(k − 1)3k · P
(
Sk = k(k − 1)3k

)
=
∞∑
k=1

(k − 1) · 1

2k
+ k(k − 1)3k · 2

22k

=
∞∑
k=1

k · 1

2k
−
∞∑
k=1

1

2k
+ 2 ·

(
∞∑
k=1

k23k · 1

4k
−
∞∑
k=1

k3k · 1

4k

)

= 2− 1 + 2 · 3

4
· 4

1

(
∞∑
k=1

k2 ·
(

3

4

)k−1

· 1

4
−
∞∑
k=1

k

(
3

4

)k−1

· 1

4

)
.

Notice that
∞∑
k=1

k2 ·
(

3

4

)k−1

= E
(
X2
)

and
∞∑
k=1

k

(
3

4

)k−1

· 1

4
= E (X) ,

where X is a G(1
4
)-distributed random variable . Hence,

∞∑
k=1

k

(
3

4

)k−1

· 1

4
= 4
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and
∞∑
k=1

k2 ·
(

3

4

)k−1

= V (X) + (E (X))2

= 12 + 16 = 28.

Finally:

E (S) = 1 + 6 · 24 = 145

Thus, (i) is true.

(c) In order to use the central limit theorem, we should first find
out whether the conditions of the theorem are satisfied. Let us
calculate V (Sk) = V (S). Note that S2 ≥ S2

k for all k ∈ N.
Therefore:

E
(
S2
)
≥ E

(
S2
k

)
= (k − 1)2 · 1

2k
+ k2(k − 1)232k · 2

22k

= (k − 1)2 · 1

2k
+ 2 · k2(k − 1)2 ·

(
9

4

)k
−→
k→∞
∞

Hence V (S) is infinite and the conditions of the theorem are not
satisfied.

Thus, (iv) is true.

(d) First, let us denote p = P (S,R > 0). Notice that all games played
are identical and independent. Let us say that at the n-th game
we have a success if Sn, Rn > 0. Therefore N is the first suc-
cess when repeating the same experiment independently, and the
probability for success is p. It is clear that 0 < p < 1, so by the
definition of geometric distribution, X ∼ G(p).

Thus, (iii) is true.
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2. (a) In order to find fY , let us first find FY :

FY (t) = P (Y ≤ t)

= P
(
X−

1
10 ≤ t

)
= P

(
X ≥ t−10

)
= P

(
X > t−10

)
= 1− FX

(
t−10

)
=

{
1− t−10, t−10 ∈ [0, 1] ,

1, otherwise,

=

{
1− t−10, t ≥ 1.

1, otherwise.

Hence:

fY (y) = F ′Y (y) =

{
10y−11, y ≥ 1,

0, otherwise .

Thus, (i) is true.
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(b) We have

P (W is odd) = P (W ∈ {1, 3, 5, 7 . . . })

=
∞∑
k=1

P (W = 2k − 1)

=
∞∑
k=1

P

(⌊
1

X

⌋
= 2k − 1

)
=
∞∑
k=1

P

(
2k − 1 ≤ 1

X
< 2k

)
=
∞∑
k=1

P

(
1

2k
< X ≤ 1

2k − 1

)
=
∞∑
k=1

(
FX

(
1

2k − 1

)
− FX

(
1

2k

))
=
∞∑
k=1

(
1

2k − 1
− 1

2k

)
= 1− 1

2
+

1

3
− 1

4
+

1

5
− 1

6
+ · · · = ln2.

Thus, (i) is true.

(c) We have

V (Y ) = E
(
Y 2
)
− (E (Y ))2

= E
(
X−

2
10

)
− E

(
X−

1
10

)2

=

∫ 1

0

t−
1
5dt−

(∫ 1

0

t−
1
10dt

)2

=
5

4
(1− 0)−

(
10

9
(1− 0)

)2

=
5

4
− 100

81
=

5

324
.
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Thus, (i) is true.

(d) We have

an = ρ
(
e−Y

2

, ln (Y n)
)
, n = 1, 2, . . . .

First, let us verify that an is well defined. Indeed:

E

((
e−Y

2
)2
)

= E
(
e−2Y 2

)
=

∫ ∞
1

e−2y2 · 10y−11dy <∞,

E
(
(ln (Y n))2) = E

(
(n · lnY )2)

= n2 · E
(
(lnY )2)

= n2 ·
∫ ∞

1

(ln y)2 · 10y−11dy <∞,

and

E
(

ln (Y n) e−Y
2
)

= n ·
∫ ∞

1

e−y
2

ln y · 10y−11dy <∞.

Similarly, E
(
e−Y

2
)

and E (ln (Y n)) are well defined. Therefore,

V
(
e−Y

2
)

, V (ln (Y n)) and Cov
(

ln (Y n) , e−Y
2
)

are well defined,

which implies that an is well defined, for every n ∈ N.
The correlation coefficient ρ is invariant to multiplication by scalars,
and therefore:

an = ρ
(
e−Y

2

, ln (Y n)
)

= ρ
(
e−Y

2

, n · lnY
)

= ρ
(
e−Y

2

, lnY
)
.
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That is, the sequence (an)∞n=1 is constant

Thus, (iii) is true.

3. (a) We have

1 =

∫∫
S

(x+ cy) · dxdy,

where S = {(x, y) : x, y ≥ 0, x2 + y2 ≤ 1}. Hence,

1 =

∫ 1

0

∫ π/2

0

(r cos θ + cr sin θ) · rdrdθ

=

∫ 1

0

r2dr

∫ π/2

0

(cos θ + c sin θ) dθ

=
1

3
·
∫ π/2

0

(cos θ + c sin θ) dθ

=
1

3
[sin θ − c cos θ]

π
2
0

=
1 + c

3
.

That is, c = 2.

Thus, (ii) is true.

(b) We have

P

(
X >

4Y

3
|X >

Y

2

)
=
P
(
X > 4Y

3

⋂
X > Y

2

)
P
(
X > Y

2

)
=
P
(
X > 4Y

3

)
P
(
X > Y

2

) .
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Denoting θ0 = arctg 3
4
:

P

(
X >

4Y

3

)
=

∫ 1

0

∫ θ0

0

(r cos θ + 2r sin θ) · rdrdθ

=
1

3
·
∫ θ0

0

(cos θ + 2 sin θ) dθ

=
1

3
[sin θ − 2 cos θ]θ00 .

Notice that calculating θ0 is not necessary; sin θ and cos θ can
be evaluated at θ0 using basic trigonometry : sin θ0 = 3

5
and

cos θ0 = 4
5
.

P

(
X >

4Y

3

)
=

1

3
[sin θ − c cos θ]θ00

=
1

3
·
(

3

5
− 0 + 2 ·

(
1− 4

5

))
=

1

3
.

Similarly, denoting θ1 = arctg 2, we have sin θ1 = 2√
5

and cos θ1 =
1√
5
.

P

(
X >

Y

2

)
=

1

3
[sin θ − c cos θ]θ10

=
1

3
·
(

2√
5
− 0 + 2 ·

(
1− 1√

5

))
=

2

3
.

Altogether

P

(
X >

4Y

3
|X >

Y

2

)
=
P
(
X > 4Y

3

)
P
(
X > Y

2

)
=

1

2
.

Thus, (iii) is true.

15



(c) We have

E
(
e−(X2+Y 2)

)
=

∫ 1

0

∫ π/2

0

e−r
2

(r cos θ + 2r sin θ) · rdrdθ

=

∫ 1

0

r2e−r
2

dr

∫ π/2

0

(cos θ + 2 sin θ) dθ

= 3 ·
∫ 1

0

r2e−r
2

dr

= −3

2
·
∫ 1

0

r · (−2r · e−r2)dr.

Using integration by parts and change of variable:

E
(
e−(X2+Y 2)

)
= −3

2
·
∫ 1

0

r · (−2r · e−r2)dr

= −3

2
·
([
r · e−r2

]1

0
−
∫ 1

0

e−r
2

dr

)
= −3

2
·

(
1

e
−
√
π

∫ 1

0

e−
s2

2

√
2π
ds

)

= −3

2
·
(

1

e
−
√
π
(

Φ
(√

2
)
− Φ (0)

))
= − 3

2e
− 3

4

√
π +

3

2

√
πΦ
(√

2
)
.

Thus, (v) is true.

16



(d) For θ ∈
[
0, π

2

]
we have

FΘ(θ) = P

(
arctg

Y

X
≤ θ

)
= P

(
Y

X
≤ tgθ

)
= P (X ≥ Y tgθ)

=

∫ 1

0

∫ θ

0

(r cos θ + 2r sin θ) · rdrdθ

=
1

3
·
∫ θ

0

(cos θ + 2 sin θ) dθ

=
1

3
[sin θ − 2 cos θ]θ0

=
sin θ − 2 cos θ + 2

3
.

It is clear that for θ < 0 we have FΘ(θ) = 0, and for θ > π
2

we
have FΘ(θ) = 1.

Thus, (i) is true.

4. (a) Let us define new random variables (Zi)
2n
i=1 as follows: for 1 ≤ i ≤ n

let

Zi =

{
1, i is ”good”,

0, otherwise,

=

{
1, i ≤ 1

n
,

0, otherwise.

For n+ 1 ≤ i ≤ 2n let

Zi =

{
1, i is ”good”,

0, otherwise,

=

{
1, 1

n
≤ Xi ≤ 1

2n
,

0, otherwise.
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We have

P (Zi = 1) =


P
(
Xi ≤ 1

n

)
, 1 ≤ i ≤ n,

P
(

1
2n
≤ Xi ≤ 1

n

)
, n+ 1 ≤ i ≤ 2n,

=


FXi(

1
n
), 1 ≤ i ≤ n,

FXi(
1
n
)− FXi( 1

2n
), n+ 1 ≤ i ≤ 2n,

=


1− e− 1

n , 1 ≤ i ≤ n,

e−
1
2n − e− 1

n , n+ 1 ≤ i ≤ 2n.

Denote: S1 =
∑n

i=1 Zi , S2 =
∑2n

i=n+1 Zi.
Since (Zi)

2n
i=1 are independent identically distributed random vari-

ables such that Zi ∼ B(1, 1 − e−
1
n ) for 1 ≤ i ≤ n and Zi ∼

B(1, e−
1
2n − e−

1
n ) for n + 1 ≤ i ≤ 2n, it is obvious that S1 ∼

B(n, 1− e− 1
n ) and S2 ∼ B(n, e−

1
2n − e− 1

n ). Using L’Hpital’s rule,
one can easily check that:

lim
n→∞

n ·
(

1− e−
1
n

)
= 1

and

lim
n→∞

n ·
(
e−

1
2n − e−

1
n

)
=

1

2
.

By the theorem proved in class, the distributions of S1 and S2

converge to Poisson distributions with parameters 1 and 1
2

respec-
tively.
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Since n is large, S1 is distributed approximately P (1) and S2 is
distributed approximately P (1

2
) .

Notice that N =
∑2n

i=1 Zi = S1 + S2 , and distributed approxi-
mately P (1

2
+1) as a sum of two independent approximately Pois-

son distributed random variables with parameters 1 and 1
2
.

Hence P (N1 = 1) ≈ 3
2
e−

3
2 .

Thus, (ii) is true.

(b) It it intuitively clear that (Yk1)∞k=1 and (Yk2)∞k=1 do not satisfy the
independence condition. Let us prove it formally by showing that
for any two consecutive indices, the covariance is not zero:

E (Yk · Yk−1) = E ((Xk +Xk−1) (Xk +Xk+1))

= E (Xk ·Xk−1) + E (Xk ·Xk+1)

+ E (Xk−1 ·Xk+1) + E
(
X2
k

)
= E (Xk)E (Xk−1) + E (Xk)E (Xk+1)

+ E (Xk−1)E (Xk+1) + E
(
X2
k

)
= 3E (Xk)

2 + E
(
X2
k

)
.

On the other hand:

E (Yk)E (Yk−1) = E (Xk +Xk−1)E (Xk +Xk+1)

= (E (Xk) + E (Xk−1)) (E (Xk) + E (Xk+1))

= 4E (Xk)
2 .

That is E (Yk · Yk−1) 6= E (Yk)E (Yk−1), so that Cov(Yk, Yk−1)6= 0,
and in particular Yk and Yk−1 are not independent. Similarly, one
can easily show that Yk2 and Yk−1,2 are not independent.

Now, let us show that (Yk4)∞k=1 does not satisfy the condition of
finite variance:

E
(
Y 2
k4

)
= E

(
e2Xk

)
=

∫ ∞
0

e2t · e−2t · dt

=

∫ ∞
0

1 · dt =∞.
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Therefore V (Yk4) =∞.

All (Xk) are independent, so it is clear that all (Yk3) are inde-
pendent as each Yk3 is a function Xk. Now,

E (Yk3) = E
(
e
Xk
2

)
=

∫ ∞
0

e
1
2
t · e−2t · dt =

∫ ∞
0

e
−3
2
t · dt <∞,

so that:

E
(
Y 2
k3

)
= E

(
eXk
)

=

∫ ∞
0

et · e−2t · dt =

∫ ∞
0

e−t · dt <∞.

Therefore, E (Yk3) , V (Yk3) <∞.
Since all Xk’s are identically distributed, so are the Yk3’s.

Thus, (iii) is true.

(c) Notice that the sequence (Xk)
∞
k=1 satisfies the conditions of the

central limit theorem.
Let E (Xi) = µ,

√
V (Xk) = σ. Since Xi ∼ Exp(2) we have µ = 1

2

and σ = 1
2

. Hence:

P

(
n∑
i=1

Xi ≤
n

2
−
√
n

)
= P

(
n∑
i=1

Xi −
n

2
≤ −
√
n

)

= P

(∑n
i=1 Xi − n

2

n
≤ −
√
n

n

)
= P

(
X̄n −

1

2
≤ − 1√

n

)
= P

(
X̄n − µ

σ√
n

≤ −
1√
n

σ√
n

)

= P

(
X̄n − µ

σ√
n

≤ − 1

σ

)

= P

(
X̄n − µ

σ√
n

≤ −2

)
.
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Since n is large, we may apply the central limit theorem:

P

(
n∑
i=1

Xi ≤
n

2
−
√
n

)
≈ Φ (−2)

= 1− Φ (2) .

Thus, (i) is true.
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