
Final #1

Mark the correct answer in each part of the following questions.

1. Reuven and Shimon play the following game. Each of them in turn
tosses a die, Reuven being the first. The game continues until, for the
first time, either Reuven gets one of the two results 1, 6 or Shimon
gets one of the four results 2, 3, 4, 5. Suppose the game ends after n
tosses. If n is odd, Reuven gets from Shimon 2n shekels, while if n is
even then Shimon gets from Reuven 2n shekels. Let X be the total
number of tosses in the game, R – Reuven’s win, and Ni the number
of tosses in which the die showed i, 1 ≤ i ≤ 6. (For example, if Reuven
got 5, then Shimon got 1, Reuven got 3, Shimon got 6, Reuven got 2,
and Shimon got 5, the random variables assume the following values:
X = 6, R = −64, N1 = N2 = N3 = N6 = 1, N4 = 0, N5 = 2.)

(a)

(i) P (R > 0) =
3

7
· P (R < 0).

(ii) P (R > 0) =
1

2
· P (R < 0).

(iii) P (R > 0) =
3

4
· P (R < 0).

(iv) P (R > 0) = P (R < 0).

(v) None of the above.

(b) P (N5 = 20|X = 100) =

1



(i)

(
50
20

)
· 330

450
.

(ii)

(
50
20

)
· 331

450
.

(iii)

(
51
20

)
· 330

451
.

(iv)

(
51
20

)
· 331

451
.

(v) None of the above.

(c) E(X) =

(i)
13

7
.

(ii)
15

7
.

(iii)
17

7
.

(iv)
19

7
.

(v) None of the above.

(d)

(i) E(R) = −20 and V (R) = 54.

(ii) E(R) = −10 and V (R) is infinite.

(iii) The series defining E(R) converges conditionally, so that R
does not have expectation and variance.

(iv) The series defining E(R) diverges to −∞, so that R does
not have expectation and variance.

(v) None of the above.
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2. The life length X of Sunlight+ light bulbs (in years) is distributed
Exp(1). Student A bought a single Sunlight+ light bulb, while students
B and C bought n light bulbs each. However, B installed all light bulbs
in parallel, while C uses only one bulb at a time, and replaces it when
it burns out.

(a) The probability that A’s light bulb will still work when all of B’s
light bulbs will burn out is

(i)
1

2
.

(ii)
1

n+ 1
.

(iii)
1

2n
.

(iv)
1

2n
.

(v) None of the above.

(b) The probability that A’s light bulb will still work when all of C’s
light bulbs will burn out is

(i)
1

n+ 1
.

(ii)
1

2n
.

(iii)
1

2n
.

(iv)
1

3n − 1
.

(v) None of the above.

(c) The power of Sunlight+ light bulbs changes in the course of their
life in such a way that the total energy, consumed by a bulb whose
life length is X, is Y = eαX , where α ∈ (0, 1/2) is a constant.

3



(i) ρ(X, Y ) =

√
1− α2

√
1 + 2α

.

(ii) ρ(X, Y ) = 1− α.

(iii) ρ(X, Y ) =
√

1− α.

(iv) ρ(X, Y ) =

√
1− 2α

1− α
.

(v) None of the above.

3. Suppose that (X, Y ) is a two-dimensional continuous random variable
with joint density function, defined by

fX,Y (x, y) =


cx2e−(x

2+y2), x, y ≥ 0, 1 ≤ x2 + y2 ≤ 4,

0, otherwise,

for an appropriate constant c.

(a) c =

(i)
e4

π(2e3 − 5)
.

(ii)
2e4

π(2e3 − 5)
.

(iii)
4e4

π(2e3 − 5)
.

(iv)
8e4

π(2e3 − 5)
.

(v) None of the above.

(b) P (X > Y ) =

4



(i)
1

2
.

(ii)
e− 1

π
.

(iii)
1

2
+

1

π
.

(iv)
1

2
+

e

2π
.

(v) None of the above.

(c) E(1/X) =

(i) c ·

(
1

2e
− 1

e4
+

√
πΦ(2

√
2)

2
−
√
πΦ(
√

2)

2

)
.

(Here, Φ denotes the standard normal distribution function.)

(ii) c ·

(
1

e
− 1

e4
+

√
πΦ(2

√
2)

2
−
√
πΦ(
√

2)

2

)
.

(iii) c ·
(

1

2e
− 1

e4
+

√
πΦ(2)

2
−
√
πΦ(1)

2

)
.

(iv) c ·
(

1

e
− 1

e4
+

√
πΦ(2)

2
−
√
πΦ(1)

2

)
.

(v) None of the above.

(d) Let D =
√
X2 + Y 2. The density function fD is given by:

(i) fD(d) =


cπd3e−d

2

8
, 1 ≤ d ≤ 2,

0, otherwise.

(ii) fD(d) =


cπd3e−d

2

6
, 1 ≤ d ≤ 2,

0, otherwise.
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(iii) fD(d) =


cπd3e−d

2

4
, 1 ≤ d ≤ 2,

0, otherwise.

(iv) fD(d) =


cπd3e−d

2

3
, 1 ≤ d ≤ 2,

0, otherwise.

(v) None of the above.

4. Let (Un)∞n=1 be sequence of independent continuous U(−1, 1)-distributed
random variables.

(a) Let N1 be the number of integers n between 1 and 106 for which
Un > 1− 10−6. Then P (N1 = 1) ≈

(i)
1

e2
.

(ii)
1

2
√
e
.

(iii)
1

e
.

(iv)
1√
e
.

(v) None of the above.

(b) Let N2 be the number of integers n between 1 and 106 for which
|Un| ≤ 0.9. Then P (|N2 − 900000| ≤ 600) ≈
(i) 0.34.

(ii) 0.48.

(iii) 0.68.

(iv) 0.95.

(v) None of the above.
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(c) The following variable has an exponential distribution:

(i) − ln |U1|.

(ii) e1/|U1|.

(iii) tg (π|U1|) .

(iv)
1

|U1|
− 1.

(v) None of the above.

(d) Define three additional sequences (Xn)∞n=1, (Yn)∞n=1, (Zn)∞n=1 by

Xn = (2 + sinn)Un, Yn =
√
nUn, Zn = nUn,

for n = 1, 2, . . .. Recall the theorem proved in class, according to
which a sequence of independent identically distributed random
variables, with finite expectation and variance, satisfies the weak
law of large numbers. Here we would like to find out to which
of the three sequences defined above the same technique would
apply to prove that it satisfies the weak law of large numbers.
(Note: We are not asking which of the sequences satisfies in fact
the law. We only ask for which of them the technique of the proof
we employed in the quoted theorem applies.)

(i) The technique works for all three sequences (Xn)∞n=1, (Yn)∞n=1,
and (Zn)∞n=1.

(ii) The technique works for (Xn)∞n=1 and (Yn)∞n=1, but not for
(Zn)∞n=1.

(iii) The technique works for (Xn)∞n=1, but not for (Yn)∞n=1 and
(Zn)∞n=1.

(iv) The technique works for none of the sequences (Xn)∞n=1, (Yn)∞n=1,
and (Zn)∞n=1.

(v) None of the above.
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Solutions

1. (a) By the law of total probability

P (R > 0) =
∞∑
n=1

P (R > 0 ∩X = n)

=
∞∑
n=0

P (R > 0 ∩X = 2n+ 1)

=
∞∑
n=0

(
2

3
· 1

3

)n
· 1

3
=

1

3

∞∑
n=0

(
2

9

)n
=

3

7
.

Now, P (R < 0) = 1 − P (R > 0) =
4

7
, and thus P (R > 0) =

3

4
· P (R < 0).

Thus, (iii) is true.

(b) Given that the game has ended after 100 tosses, there were 50
times Reuven received one of the results 2, 3, 4, 5, there were 49
times Shimon received one of the results 1, 6, and at the 100-th
toss Shimon received one of the results 2, 3, 4, 5. By the indepen-
dence of the tosses, the probability of receiving 5 at each of the

tosses 1, 3, . . . , 97, 99, 100 is
1

4
. Thus, given that the game ended

at the 100-th toss, the number of times the result 5 has occurred

is B

(
51,

1

4

)
-distributed. Hence:

P (N20|X = 100) =

(
51

20

)
·
(

1

4

)20

·
(

3

4

)31

=

(
51
20

)
· 331

451
.

Thus, (iv) is true.
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(c) We have:

E (X) =
∞∑
k=1

k · P (X = k)

=
∞∑
k=0

(2k + 1) · P (X = 2k + 1) +
∞∑
k=1

2k · P (X = 2k)

=
∞∑
k=0

(2k + 1) ·
(

2

3
· 1

3

)k
· 1

3
+
∞∑
k=1

2k ·
(

2

3
· 1

3

)k−1
2

3
· 2

3

=
1

3

∞∑
k=0

(
2

9

)k
+

2

3

∞∑
k=0

k ·
(

2

9

)k
+

8

9

∞∑
k=1

k ·
(

2

3
· 1

3

)k−1
=

1

3

∞∑
k=0

(
2

9

)k
+

2

3

∞∑
k=0

k ·
(

2

9

)k
+

9

2
· 8

9

∞∑
k=1

k ·
(

2

9

)k−1
· 2

9

=
1

3

∞∑
k=0

(
2

9

)k
+

(
2

3
+ 4

) ∞∑
k=0

k ·
(

2

9

)k
=

1

3
· 1

1− 2/9
+

14

3
· 2/9

(1− 2/9)2
=

15

7
.

Thus, (ii) is true.

(d) Suppose the game has ended after X tosses. The winnings of
Reuven depend only on the pairity of X. If X is odd, Reuven
wins 2X shekels from Shimon, whereas if X is even, Reuven pays
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Shimon 2X shekels. Thus R = − (−2)X . We have:

E (R) =
∞∑
k=1

− (−2)k · P (X = k)

=
∞∑
k=0

22k+1 · P (X = 2k + 1)−
∞∑
k=1

22k · P (X = 2k)

=
∞∑
k=0

22k+1 ·
(

2

3
· 1

3

)k
1

3
+
∞∑
k=1

22k ·
(

2

3
· 1

3

)k−1
2

3
· 2

3

= 2 · 1

3

∞∑
k=0

(
8

9

)k
− 22 · 4

9

∞∑
k=1

4k−1 ·
(

2

9

)k−1
=

2

3

∞∑
k=0

(
8

9

)k
− 16

9

∞∑
k=0

(
8

9

)k
=

1

1− 8/9
·
(

2

3
− 16

9

)
= 9 · −10

9
= −10.

Similarly:

E
(
R2
)

=
∞∑
k=1

22k · P (X = k)

=
∞∑
k=0

42k+1 · P (X = 2k + 1) +
∞∑
k=1

42k · P (X = 2k)

>
∞∑
k=0

42k+1 · P (X = 2k + 1) =
∞∑
k=0

42k+1 ·
(

2

3
· 1

3

)k
1

3

= 4 · 1

3

∞∑
k=0

(
32

9

)k
=∞.

Therefore, E(R) = −10 and V (R) =∞.

Thus, (ii) is true.

10



2. (a) The life length of the light bulbs is a continuous variable, and
thus the probability of two light bulbs burning out at the same
exact moment is 0. By symmetry, the probability that any of the

n+ 1 light bulbs will outlive all others is
1

n+ 1
. In particular, the

probability that A’s light bulb will outlive all of B’s is
1

n+ 1
.

Thus, (ii) is true.

(b) Let XA be the life length of A’s light bulb, and Y1, . . . , Yn the life
lengths of C’s. Denote by p the probability in question. Then:

p = P (XA > Y1 + Y2 + . . .+ Yn)

= P (XA > Y1, XA > Y1, . . . , XA > Y1 + . . .+ Yn)

= P (XA > Y1) · P (XA > Y1 + Y2|XA > Y1)

· . . . · P (XA > Y1 + . . .+ Yn|XA > Y1 + . . .+ Yn−1) .

By the memorylessness property of the exponential distribution:

p = P (XA > Y1) · . . . · P (XA > Yn) .

By symmetry, each of the factors on the right-hand side is
1

2
, and

therefore

p =
1

2n
.

Thus, (iii) is true.

(c) We have

E
(
eαX

)
=

∫ ∞
0

eαx · e−xdx =

∫ ∞
0

e(α−1)xdx

=

[
e(α−1)x

α− 1

]∞
0

=
1

1− α
,
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and by the same token

E
((
eαX

)2)
= E

(
e2αX

)
=

1

1− 2α
.

Thus

V
(
eαX

)
=

1

1− 2α
−
(

1

1− α

)2

=
α2

(1− 2α) (1− α)2
.

Now,

E
(
XeαX

)
=

∫ ∞
0

xeαx · e−xdx =

∫ ∞
0

x · e(α−1)xdx

=

[
x

α− 1
· e(α−1)x

]∞
0

−
∫ ∞
0

1

α− 1
· e(α−1)xdx

=

(
1

1− α

)2

.

Therefore

Cov
(
X, eαX

)
=

(
1

1− α

)2

− E(X) · 1

1− α

=

(
1

1− α

)2

− 1

1− α

=
1− (1− α)

(1− α)2
=

α

(1− α)2
.

Altogether

ρ
(
X, eαX

)
=

Cov
(
X, eαX

)√
V (X) · V (eαX)

=
α/ (1− α)2√

1 · α2/ (1− 2α) (1− α)2
=

√
1− 2α

1− α
.

Thus, (iv) is true.
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3. (a) We have

1 = c

∫∫
S

x2e−(x
2+y2)dxdy,

where S = {(x, y) : x, y ≥ 0, 1 ≤ x2 + y2 ≤ 4}. Now:

1 = c

∫ 2

1

∫ π/2

0

r2 cos2 θ · e−r2 · rdrdθ

= c

∫ 2

1

r2 · re−r2dr
∫ π/2

0

cos2 θdθ

= c ·

([
−1

2
r2 · e−r2

]2
1

+

∫ 2

1

r · e−r2dr

)
·

(
1

2
·
[
θ +

sin 2θ

2

]π/2
0

)

= c ·

([
−1

2
r2 · e−r2

]2
1

+

[
−1

2
· e−r2

]2
1

)
·
(

1

2
· π

2

)
= c · π

8

(
−4e−4 + e−1 − e−4 + e−1

)
= c · π

8

(
−5e−4 + 2e−1

)
.

Hence, c =
8e4

π (2e3 − 5)
.

Thus, (iv) is true.

(b) We have

P (X > Y ) = c

∫∫
A

x2e−(x
2+y2)dxdy,
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where A = {(x, y) : x, y ≥ 0, 1 ≤ x2 + y2 ≤ 4, x > y}. Now:

P (X > Y ) = c

∫ 2

1

∫ π/4

0

r2 cos2 θ · e−r2 · rdrdθ

= c

∫ 2

1

r2 · re−r2dr
∫ π/4

0

cos2 θdθ

=
c

2
·
(
−5e−4 + 2e−1

)
·

(
1

2
·
[
θ +

sin 2θ

2

]π/4
0

)

=
c

4
·
(
−5e−4 + 2e−1

)
·
(
π

4
+

1

2

)
=

8e4

π (2e3 − 5)
· 1

4
·
(
−5e−4 + 2e−1

)
·
(
π

4
+

1

2

)
=

2

π
·
(
π

4
+

1

2

)
=

1

2
+

1

π
.

Thus, (iii) is true.

(c) We have

E(1/X) = c

∫∫
S

1

x
· x2e−(x2+y2)dxdy = c

∫∫
S

xe−(x
2+y2)dxdy

= c

∫ 2

1

r · re−r2dr
∫ π/2

0

cos θdθ

= c ·

([
−1

2
r · e−r2

]2
1

+

∫ 2

1

1

2
e−r

2

dr

)
· [sin θ]π/20

= c ·

(
1

2
e−1 − e−4 +

1

2
·
√
π

∫ 2

1

1√
2π · 1/2

e−r
2/(2· 1

2
)dr

)
· 1

= c ·
(

1

2
e−1 − e−4 +

√
π

2
· P (1 ≤ W ≤ 2)

)
,

where W ∼ N(0,
1

2
). Now W/ 1√

2
∼ N(0, 1), and thus

P (1 ≤ W ≤ 2) = P (
√

2 ≤
√

2W ≤ 2
√

2) = Φ(2
√

2)− Φ(
√

2).
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Altogether

E(1/X) = c ·
(

1

2
e−1 − e−4 +

√
π

2

(
Φ(2
√

2)− Φ(
√

2)
))

.

Thus, (i) is true.

(d) The variable D assumes values in (1, 2), and therefore for t ∈ (1, 2)
we have

FD(t) = P
(√

X2 + Y 2 ≤ t
)

= c

∫∫
Bt

x2e−(x
2+y2)dxdy,

where Bt = {(x, y) : x, y ≥ 0, 1 ≤ x2 + y2 ≤ t2}. Now:

FD(t) = c

∫ t

1

r2 · re−r2dr
∫ π/2

0

cos2 θdθ

= c ·

([
−1

2
r2 · e−r2

]t
1

+

[
−1

2
· e−r2

]t
1

)
· π

4

= −1

2
· cπ

4
·
(
t2e−t

2 − e−1 + e−t
2 − e−1

)
.

Now,

fD(t) = F
′

D(t) = −cπ
8
·
(

2t · e−t2 + t2e−t
2 · (−2t) + e−t

2 · (−2t)
)

= −cπ
8
· e−t2 · (−2t) · t2 =

cπe−t
2
t3

4
.

Thus, (iii) is true.

4. (a) Let Xn = 1 if Un > 1 − 10−6, and Xn = 0 otherwise. We may
express N1 in terms of the Xn’s:

N1 = X1 + . . .+X106 .

We have

P (Xn = 1) = P
(
Un > 1− 10−6

)
=

1− (1− 10−6)

1− (−1)
=

10−6

2
.
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Thus, Xn ∼ B

(
1,

10−6

2

)
and N1 ∼ B

(
106,

10−6

2

)
. As 106 is

very large, and
10−6

2
very small, we use the Poissonian approxima-

tion to the binomial distribution to obtain P (N1 = 1) ≈ P (W =

2), where W ∼ P (λ), with λ = 106 · 10−6

2
=

1

2
. Namely:

P (N1 = 1) ≈ (1/2)1

1!
· e−1/2 =

1

2
√
e
.

Thus, (ii) is true.

(b) Let Yn = 1 if |Un| < 0.9, and Yn = 0 otherwise. We may express
N2 in terms of the Yn’s:

N2 = Y1 + . . .+ Y106 .

We have:

P (Yn = 1) = P (|Un| ≤ 0.9) =
0.9− (−0.9)

1− (−1)
= 0.9.

Thus, Yn ∼ B(1, 0.9), so that µ = E(Yn) = 0.9, and σ2 = V (Yn) =
0.09. Denote by p the probability in question. The variables Yn
are independent and thus, by the central limit theorem:

p = P (|N2 − 900000| ≤ 600)

= P

(
− 600

1000 · 0.3
≤ N2 − 106µ√

106 · σ
≤ 600

1000 · 0.3

)
= P

(
−2 ≤ N2 − 106µ√

106 · σ
≤ 2

)
≈ Φ(2)− Φ(−2) = 2 · Φ(2)− 1 = 0.9545.

Thus, (iv) is true.
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(c) Consider (i). Let A = − ln |U1|. The variable |U1| assumes values
in (0, 1), and therefore:

FA (t) = P (−ln|U1| ≤ t) = P
(
|U1| ≥ e−t

)
= 1− P

(
|U1| < e−t

)
= 1− P

(
−e−t < U1 < e−t

)
= 1− e−t − (−e−t)

1− (−1)
= 1− e−t, t ≥ 0.

Hence

FA (t) =

{
0, t < 0,

1− e−t, t ≥ 0,

and

fA (t) =

{
0, t < 0,

e−t, t ≥ 0,

so that (i) is true.

Consider (ii). Let B = e1/|U1|. The variable B assumes values
(e,∞), so that (ii) is false.

Consider (iii). Let C = tan(π|U1|). The variable C assumes
values (−∞,∞), so that (iii) is false.

Consider (iv). Let D =
1

|U1|
− 1. The variable D assumes

values in (0,∞). For t ∈ (0,∞) we have

FD (t) = P

(
1

|U1|
− 1 ≤ t

)
= P

(
1

|U1|
≤ t+ 1

)
= P

(
|U1| ≥

1

t+ 1

)
= 1− F|U1|

(
1

t+ 1

)
= 1− 1

t+ 1
=

t

t+ 1
.

Therefore

FD (t) =

0, t < 0,
t

t+ 1
, t ≥ 0,
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and

fD (t) =

0, t < 0,
1

(t+ 1)2
, t ≥ 0,

so that (iv) is false.

Thus, (i) is the only true claim.

(d) Recall that the proof in class used Chebyshev’s inequality to prove
that a sequence of independent identically distributed random
variables satisfies the weak law of large numbers. Note that all
three sequences (Xn)∞n=1, (Yn)∞n=1 and (Zn)∞n=1 are special cases
of the sequence (Wn)∞n=1 defined by Wn = anUn, n ≥ 1, for an
appropriate sequence (an)∞n=1 of positive numbers. We have

E(Wn) = E(anUn) = an · E(Un) = an ·
−1 + 1

2
= 0,

and

V (Wn) = V (anUn) = a2nV (Un) = a2n ·
(1− (−1))2

12
= a2n ·

1

3
.

Denote W n =
1

n

∑n
k=1Wk. We have

E(W n) =
1

n

n∑
k=1

E(Wk) = 0,

and by the independence of Wk

V (W n) =
1

n2

n∑
k=1

V (Wk) =
1

n2

n∑
k=1

a2k ·
1

3
=

1

3n2

n∑
k=1

a2k.

By Chebyshev’s inequality

P
(
|W n| ≥ ε

)
≤ V (W n)

ε2
=

1

3n2ε2

n∑
k=1

a2k, ε > 0.
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Consider (Xn)∞n=1. We have an = 2 + sinn for n = 1, 2, . . . .
Thus, for every ε > 0

lim
n→∞

1

3n2ε2

n∑
k=1

a2k = lim
n→∞

1

3n2ε2

n∑
k=1

(2 + sin k)2

≤ lim
n→∞

9n

3n2ε2
= 0.

Thus, we may employ the same technique of proof for the sequence
(Xn)∞n=1.

Consider (Yn)∞n=1. We have an =
√
n for n = 1, 2, . . . . Thus,

for every ε > 0

lim
n→∞

1

3n2ε2

n∑
k=1

a2k = lim
n→∞

1

3n2ε2

n∑
k=1

(√
k
)2

= lim
n→∞

1

3n2ε2

n∑
k=1

k

= lim
n→∞

1

3n2ε2
· n (n+ 1)

2
=

1

6ε2
6= 0.

Thus, we cannot employ the same technique of proof for the se-
quence (Yn)∞n=1.

Consider (Zn)∞n=1. We have an = n for n = 1, 2, . . . . Thus, for
every ε > 0

lim
n→∞

1

3n2ε2

n∑
k=1

a2k = lim
n→∞

1

3n2ε2

n∑
k=1

k2

= lim
n→∞

1

3n2ε2
· n (n+ 1) (2n+ 1)

6
=∞.

Thus, we cannot employ the same technique of proof for the se-
quence (Zn)∞n=1.

Thus, (iii) is true.
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