
Final #2 - Questions and Solutions

1. Consider the following MATLAB code:

while x > 9 ∗ x/10
x = 9 ∗ x/10;

end;
x
Suppose the above MATLAB code is run on a system working with the IEEE

standard, double precision and round-to-nearest mode, and the initial value of x
lies within the interval [1, 2]. Explain why the above loop terminates its action
within finitely many steps, and find the value of x upon its termination.

The successive values x attains form a descending sequence of floating point
non-negative numbers. As there are only finitely many such numbers on the
computer, the loop must eventually finish.

The final value of x is a sub-normal number. In fact, the ratio between
neighbouring normal numbers is about 1 + ε. Hence for normal y we certainly
have y > round(9 ∗ y/10).

Each sub-normal number x is of the form x = ns, where s = 2−1074 is the
smallest positive sub-normal number and n is integer. The same reasoning as
before shows that for relatively large n we have x > round(9 ∗ x/10). More
precisely, this is the case as long as ns− s/2 > 9ns/10. In other words, the value
of x is left unchanged if:

9ns

10
> ns −

s

2
.

Equivalently:

9ns > 10ns − 5s ,

which yields:

n < 5 .

The case n = 5 is a borderline case. The exact value of 9·5s
10 is 4.5s, which

is equi-distant from its floating point neighbours, 4s and 5s. Is is rounded to 4s
since is such cases the rounding is to the number with a 0 digit at the lowest bit.

Thus, the loop will reduce the value of x as long as x > 4s, and will be
terminated at x = 4s.

Let us note that in case the initial value of x is s, 2s or 3s, the loop terminates
immediately without changing the value of x. In our case, since the initial value
of x is big, the above calculations show that at no stage will it be rounded to one
of these three values.



2. Let f(x) = 2x − 2x. Show that f has exactly two real roots. Find for
which starting points, Newton’s method leads to convergence to each of these
roots.

Clearly, x1 = 1 and x2 = 2 are both roots of f . Now:

f ′(x) = 2x ln 2 − 2 .

To find the zeros of f ′ we solve 2a ln 2 − 2 = 0, which gives a = log2(
2

ln 2 ) =
1− ln ln 2

ln 2 . Note that 1 < a < 2. Moreover, f ′(x) < 0 for x < a and f ′(x) > 0 for
x > a.

Now f ′′(x) = 2x ln2 2 > 0, x ∈ R, whence f is convex on the whole line.
We cannot start Newton’s method at the point a (the tangent to the graph

of f is horizontal). Suppose 1 < x0 < a. The convexity of f then gives x1 < 1.
Similarly, if a < x0 < 2, then x1 > 2. Hence, without loss of generality we may
assume that the initial point does not belong to the interval [1, 2].

Suppose first we start with a point x0 ∈ (−∞, 1). The sequence (xn)∞n=0 is
increasing and bounded above by 1 due to the convexity of f . Its convergence to
the root 1 may be deduced from the general theorem proved in class or be proved
directly as follows. Suppose xn −→

n→∞

b. Then also xn+1 −→
n→∞

b, which means that

xn −
f(xn)

f ′(xn)
−→

n→∞

b.

Since f and f ′ are continuous, and f ′ does not vanish to the left of 1, we obtain

xn −
f(xn)

f ′(xn)
−→

n→∞

b −
f(b)

f ′(b)
.

Therefore b − f(b)
f ′(b) = b ⇒ f(b) = 0 ⇒ b = 1.

In the same way one can easily prove that, starting from a point x0 > 2,
Newton’s method gives a sequence converging to 2.

Summarizing the above, if we start at a point x0 < a we obtain a sequence
converging to 1, while if we start at a point x0 > a, the resulting sequence
converges to 2.

3. Let a = x0 < x1 < . . . < xn = b, f0 < f1 < . . . < fn. Prove or disprove
the following statements:

a. The interpolation polynomial of degree not exceeding n passing
through the points (x0, f0), (x1, f1), . . . , (xn, fn) forms an increasing function on
the interval [a, b].

False. For example, the parabola y = −x2 is the interpolation polynomial
corresponding to the points (−2,−4), (−1,−1), ( 1

2 ,−1
4 ), Although these points

satisfy the conditions in question, the parabola does not increase on the whole
interval [−2, 1

2 ].
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b. The linear spline passing through those points forms an increasing
function on the interval.

True. The equation of the spline in a typical sub-interval [xi, xi+1] is

S(x) = fi +
fi+1 − fi

xi+1 − xi

(x − xi) ,

which is evidently increasing.

c. Every cubic spline passing through those points forms an increasing
function on the interval.

False. When choosing a spline, we may take S′(a) and S′(b) arbitrarily.
In particular, we may take S′(a) < 0, so that the spline will decrease in some
neighbourhood of a.

4. We are looking for an approximation formula of the type

∫ 1

−1

f(x)dx ≈ w1f(−1) + w2f(x2) + . . . + wkf(xk) ,

which will be exact for all polynomials up to some degree, as large as possible.

a. Explain intuitively for polynomials up to what degree is it plausible
to expect such a formula to be precise.

We have 2k − 1 free parameters. Hence we may expect to find a formula
which will be exact for all polynomials of degree ≤ 2k − 2.

b. Find w1, w2, x2 for which the required formula is obtained in the case
k = 2.

For the polynomails 1, x, x2, the following equalities are required:
(1)

∫ 1

−1
1dx = 2 = w1 · 1 + w2 · 1 ,

(2)
∫ 1

−1
xdx = 0 = w1 · (−1) + w2 · x2 ,

(3)
∫ 1

−1
x2dx = 2

3 = w1 · (−1)2 + w2 · x
2
2 .

From (2) it follows that w1 = w2x2. Substituting in (1) and (3) we obtain:
(4) w2(x2 + 1) = 2 ,
(5) w2x2(x2 + 1) = 2

3 .
Dividing both sides of (5) by the respective sides of (4) we get x2 = 1

3 . From
(4) it now follows that w2 = 3

2 and therefore w1 = 1
2 .

c. For arbitrary fixed k, let P (x) = (x − x2) · . . . · (x − xk). Define a
suitable inner product on the space of polynomials and explain how it enables in
principle to find the polynomial P .

Define 〈·, ·〉 by 〈Q1, Q2〉 =
∫ 1

−1
(x + 1)Q1(x)Q2(x)dx . The bilinearity and

symmetry of 〈·, ·〉 are straightforward. The inequality 〈Q,Q〉 > 0 for Q 6= 0
follows from the fact that x + 1 is positive in the given interval (except for the
point −1).
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For the polynomial P defined above and for any Q of degree ≤ k−2 we have

〈P,Q〉 =

∫ 1

−1

(x + 1)P (x)Q(x)dx

= w1 · (−1 + 1)P (−1)Q(−1) + w2P (x2)Q(x2) . . . wkP (xk)Q(xk)

(since the integrand is of degree ≤ 2k−2). Now the right hand side vanishes, the
first term due to the factor (−1+1) and all others since P (xi) = 0 for 2 ≤ i ≤ k.

Consequently, it is possible to find the polynomial P for any k using the
Gram-Schmidt process.
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