Final \#2-Questions and Solutions

1. Consider the following MATLAB code:
while $x>9 * x / 10$
$x=9 * x / 10$;
end;
x
Suppose the above MATLAB code is run on a system working with the IEEE standard, double precision and round-to-nearest mode, and the initial value of x lies within the interval $[1,2]$. Explain why the above loop terminates its action within finitely many steps, and find the value of x upon its termination.

The successive values x attains form a descending sequence of floating point non-negative numbers. As there are only finitely many such numbers on the computer, the loop must eventually finish.

The final value of x is a sub-normal number. In fact, the ratio between neighbouring normal numbers is about $1+\varepsilon$. Hence for normal y we certainly have $y>\operatorname{round}(9 * y / 10)$.

Each sub-normal number x is of the form $x=n s$, where $s=2^{-1074}$ is the smallest positive sub-normal number and n is integer. The same reasoning as before shows that for relatively large n we have $x>\operatorname{round}(9 * x / 10)$. More precisely, this is the case as long as $n s-s / 2>9 n s / 10$. In other words, the value of x is left unchanged if:

$$
\frac{9 n s}{10}>n s-\frac{s}{2}
$$

Equivalently:

$$
9 n s>10 n s-5 s
$$

which yields:

$$
n<5 .
$$

The case $n=5$ is a borderline case. The exact value of $\frac{9.5 s}{10}$ is $4.5 s$, which is equi-distant from its floating point neighbours, $4 s$ and $5 s$. Is is rounded to $4 s$ since is such cases the rounding is to the number with a 0 digit at the lowest bit.

Thus, the loop will reduce the value of x as long as $x>4 s$, and will be terminated at $x=4 s$.

Let us note that in case the initial value of x is $s, 2 s$ or $3 s$, the loop terminates immediately without changing the value of x. In our case, since the initial value of x is big, the above calculations show that at no stage will it be rounded to one of these three values.
2. Let $f(x)=2^{x}-2 x$. Show that f has exactly two real roots. Find for which starting points, Newton's method leads to convergence to each of these roots.

Clearly, $x_{1}=1$ and $x_{2}=2$ are both roots of f. Now:

$$
f^{\prime}(x)=2^{x} \ln 2-2 .
$$

To find the zeros of f^{\prime} we solve $2^{a} \ln 2-2=0$, which gives $a=\log _{2}\left(\frac{2}{\ln 2}\right)=$ $1-\frac{\ln \ln 2}{\ln 2}$. Note that $1<a<2$. Moreover, $f^{\prime}(x)<0$ for $x<a$ and $f^{\prime}(x)>0$ for $x>a$.

Now $f^{\prime \prime}(x)=2^{x} \ln ^{2} 2>0, x \in \mathbf{R}$, whence f is convex on the whole line.
We cannot start Newton's method at the point a (the tangent to the graph of f is horizontal). Suppose $1<x_{0}<a$. The convexity of f then gives $x_{1}<1$. Similarly, if $a<x_{0}<2$, then $x_{1}>2$. Hence, without loss of generality we may assume that the initial point does not belong to the interval [1,2].

Suppose first we start with a point $x_{0} \in(-\infty, 1)$. The sequence $\left(x_{n}\right)_{n=0}^{\infty}$ is increasing and bounded above by 1 due to the convexity of f. Its convergence to the root 1 may be deduced from the general theorem proved in class or be proved directly as follows. Suppose $x_{n} \xrightarrow{\longrightarrow} b$. Then also $x_{n+1} \underset{n \rightarrow \infty}{\longrightarrow} b$, which means that

$$
x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)} \underset{n \rightarrow \infty}{\longrightarrow} b
$$

Since f and f^{\prime} are continuous, and f^{\prime} does not vanish to the left of 1 , we obtain

$$
x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)} \underset{n \rightarrow \infty}{\longrightarrow} b-\frac{f(b)}{f^{\prime}(b)} .
$$

Therefore $b-\frac{f(b)}{f^{\prime}(b)}=b \quad \Rightarrow f(b)=0 \quad \Rightarrow b=1$.
In the same way one can easily prove that, starting from a point $x_{0}>2$, Newton's method gives a sequence converging to 2 .

Summarizing the above, if we start at a point $x_{0}<a$ we obtain a sequence converging to 1 , while if we start at a point $x_{0}>a$, the resulting sequence converges to 2 .
3. Let $a=x_{0}<x_{1}<\ldots<x_{n}=b, \quad f_{0}<f_{1}<\ldots<f_{n}$. Prove or disprove the following statements:
a. The interpolation polynomial of degree not exceeding n passing through the points $\left(x_{0}, f_{0}\right),\left(x_{1}, f_{1}\right), \ldots,\left(x_{n}, f_{n}\right)$ forms an increasing function on the interval $[a, b]$.

False. For example, the parabola $y=-x^{2}$ is the interpolation polynomial corresponding to the points $(-2,-4),(-1,-1),\left(\frac{1}{2},-\frac{1}{4}\right)$, Although these points satisfy the conditions in question, the parabola does not increase on the whole interval $\left[-2, \frac{1}{2}\right]$.
b. The linear spline passing through those points forms an increasing function on the interval.

True. The equation of the spline in a typical sub-interval $\left[x_{i}, x_{i+1}\right]$ is

$$
S(x)=f_{i}+\frac{f_{i+1}-f_{i}}{x_{i+1}-x_{i}}\left(x-x_{i}\right),
$$

which is evidently increasing.
c. Every cubic spline passing through those points forms an increasing function on the interval.

False. When choosing a spline, we may take $S^{\prime}(a)$ and $S^{\prime}(b)$ arbitrarily. In particular, we may take $S^{\prime}(a)<0$, so that the spline will decrease in some neighbourhood of a.
4. We are looking for an approximation formula of the type

$$
\int_{-1}^{1} f(x) d x \approx w_{1} f(-1)+w_{2} f\left(x_{2}\right)+\ldots+w_{k} f\left(x_{k}\right)
$$

which will be exact for all polynomials up to some degree, as large as possible.
a. Explain intuitively for polynomials up to what degree is it plausible to expect such a formula to be precise.

We have $2 k-1$ free parameters. Hence we may expect to find a formula which will be exact for all polynomials of degree $\leq 2 k-2$.
b. Find w_{1}, w_{2}, x_{2} for which the required formula is obtained in the case $k=2$.

For the polynomails $1, x, x^{2}$, the following equalities are required:
(1) $\int_{-1}^{1} 1 d x=2=w_{1} \cdot 1+w_{2} \cdot 1$,
(2) $\int_{-1}^{1} x d x=0=w_{1} \cdot(-1)+w_{2} \cdot x_{2}$,
(3) $\int_{-1}^{1} x^{2} d x=\frac{2}{3}=w_{1} \cdot(-1)^{2}+w_{2} \cdot x_{2}^{2}$.

From (2) it follows that $w_{1}=w_{2} x_{2}$. Substituting in (1) and (3) we obtain:
(4) $w_{2}\left(x_{2}+1\right)=2$,
(5) $w_{2} x_{2}\left(x_{2}+1\right)=\frac{2}{3}$.

Dividing both sides of (5) by the respective sides of (4) we get $x_{2}=\frac{1}{3}$. From (4) it now follows that $w_{2}=\frac{3}{2}$ and therefore $w_{1}=\frac{1}{2}$.
c. For arbitrary fixed k, let $P(x)=\left(x-x_{2}\right) \cdot \ldots \cdot\left(x-x_{k}\right)$. Define a suitable inner product on the space of polynomials and explain how it enables in principle to find the polynomial P.

Define $\langle\cdot, \cdot\rangle$ by $\left\langle Q_{1}, Q_{2}\right\rangle=\int_{-1}^{1}(x+1) Q_{1}(x) Q_{2}(x) d x$. The bilinearity and symmetry of $\langle\cdot, \cdot\rangle$ are straightforward. The inequality $\langle Q, Q\rangle>0$ for $Q \neq 0$ follows from the fact that $x+1$ is positive in the given interval (except for the point -1).

For the polynomial P defined above and for any Q of degree $\leq k-2$ we have

$$
\begin{aligned}
\langle P, Q\rangle & =\int_{-1}^{1}(x+1) P(x) Q(x) d x \\
& =w_{1} \cdot(-1+1) P(-1) Q(-1)+w_{2} P\left(x_{2}\right) Q\left(x_{2}\right) \ldots w_{k} P\left(x_{k}\right) Q\left(x_{k}\right)
\end{aligned}
$$

(since the integrand is of degree $\leq 2 k-2$). Now the right hand side vanishes, the first term due to the factor $(-1+1)$ and all others since $P\left(x_{i}\right)=0$ for $2 \leq i \leq k$.

Consequently, it is possible to find the polynomial P for any k using the Gram-Schmidt process.

