Final \#1-Questions and Solutions

1. a. Let x_{0} be a real number. Define a sequence $\left(x_{n}\right)_{n=1}^{\infty}$ by:

$$
x_{n+1}=\sin x_{n}, \quad n=0,1,2, \ldots .
$$

Using the fact that $|\sin x|<|x|$ for every $x \neq 0$, show that the sequence x_{n} converges to the unique fixed point $x=0$ of the function $g(x)=\sin x$.

We first note that, since $x_{1}=\sin x_{0}$, we must have $\left|x_{1}\right| \leq 1$. If $x_{1}=0$, then all subsequent terms of the sequence are 0 . Let us deal with the case $x_{1}>0$. (The case $x_{1}<0$ is analogous.) A straightforward induction shows that in this case the sequence is decreasing, and all its terms are positive. Hence it converges to a finite limit ξ. As g is continuous, ξ is a fixed point of g. Since $|\sin x|<|x|$ for every $x \neq 0$, the unique fixed point is 0 , whence $\xi=0$.
b. Is the convergence linear, slower or faster?

Let e_{n} be the distance from the fixed point after n steps, namely $e_{n}=\xi-x_{n}$. Since $\frac{\sin x}{x} \underset{x \rightarrow 0}{\longrightarrow} 1$, we have

$$
\frac{e_{n+1}}{e_{n}} \underset{n \rightarrow \infty}{\longrightarrow} 1
$$

Thus, the convergence is sub-linear.
c. Write MATLAB code designed to calculate (approximately) the fixed point in question. Given an initial value a for x_{0}, the x_{n} 's are consecutively calculated up to the first index L for which $x_{L+1}=x_{L}$.

```
function \([x\), niter \(]=\operatorname{prob1c}(a)\)
niter \(=0\);
\(x=[a]\);
\(t m p=a ;\)
\(f t m p=\sin (t m p)\);
while \(t m p \sim=f t m p\)
    \(x=[x \mathrm{ftmp}]\);
    \(t m p=f t m p ;\)
    \(f t m p=\sin (t m p) ;\)
    niter \(=\) niter +1 ;
end
```

d. Suppose the above MATLAB code is run on a system working with the IEEE standard, double prcision and round-to-nearest mode, and the initial value of x_{0} lies within the interval $\left[\frac{\pi}{4}, \frac{\pi}{2}\right]$. Find (the order of magnitude of) x_{L}.

In this case the sequence x_{n} decreases to zero. On the computer, it will decrease as long as x_{k} and $\sin x_{k}$ are distinguishable. Since, for $x_{k} \approx 0$ we $\sin x_{k} \approx x_{k}-\frac{x_{k}^{3}}{6}$, we have to find when $x_{k}-\frac{x_{k}^{3}}{6}$ is rounded to x_{k} itself and when to a number strictly smaller. Let $x_{k}=m \cdot 2^{E}$ with $1 \leq m \leq 2$. Then $\frac{x_{k}^{3}}{6}$ will be big enough to change x_{k} exactly if

$$
\frac{x_{k}^{3}}{6} \geq 2^{-54} * 2^{E}
$$

To find the order of magnitude of the required threshold, we replace 2^{E} on the right hand side by x_{k} to obtain the condition

$$
\frac{x_{k}^{3}}{6} \geq 2^{-54} x_{k}
$$

Equivalently, we see that $\sin x_{k}$ is rounded to a number smaller than x_{k} (approximately) if $x_{k} \geq \sqrt{6} \cdot 2^{-27}$.

The above calculations actually suffice to obtain the precise result. In fact, it hints that the threshold is somehwere between 2^{-26} and 2^{-25}. For x_{k} in this region, the exact condition is

$$
\frac{x_{k}^{3}}{6} \geq \frac{1}{2} \cdot 2^{-52} \cdot 2^{-26}
$$

which gives

$$
x_{k} \geq \sqrt[3]{3} \cdot 2^{-26}
$$

Thus $x_{L}=\sqrt[3]{3} \cdot 2^{-26}$.
2. Let $\left(x_{n}\right)_{n=1}^{\infty}$ be a sequence of distinct points on the real line, and let $f(x)=e^{x} \cos x$. For each n, let P_{n} denote the interpolation polynomial of degree not exceeding n, coinciding with f at the points $x_{0}, x_{1}, \ldots, x_{n}$.
a. Prove that we do not necessarily have $P_{n}(x) \underset{n \rightarrow \infty}{\longrightarrow} f(x)$ for every $x \in$ R.

In fact, let $x_{n}=n \pi+\frac{\pi}{2}$. Since f vanishes at all the points x_{n}, each P_{n} is the zero polynomial, and therefore the required convergence convergence does not hold at points which are not zeros of f.
b. Show that if $\left(x_{n}\right)_{n=1}^{\infty}$ then $P_{n}(x) \underset{n \rightarrow \infty}{\longrightarrow} f(x)$ for every $x \in \mathbf{R}$; moreover, the convergence is uniform on any finite interval.

One shows easily by induction that for all n we have

$$
f^{(n)}(x)=a_{n} e^{x} \cos x+b_{n} e^{x} \sin x
$$

for appropriately chosen constants a_{n}, b_{n}.

It is possible, in various ways, to give explicit expressions for a_{n} and b_{n}. For example, differentiating the formula for $f^{(n)}(x)$, we easily obtain the following recursion:

$$
\begin{align*}
a_{n+1} & =a_{n}+b_{n}, \tag{1}\\
b_{n+1} & =-a_{n}+b_{n} .
\end{align*}
$$

As the recursion is linear, and with constant coefficients, it is possible to solve explicitly for a_{n} and b_{n}. Another possibility is by starting with:

$$
\begin{equation*}
f^{(n)}(x)=\sum_{k=0}^{n}\binom{n}{k} e^{x^{(k)}} \sin ^{(n-k)} x=\sum_{k=0}^{n}\binom{n}{k} e^{x} \sin ^{(n-k)} x . \tag{2}
\end{equation*}
$$

(Still another option is by rewriting the function in the form

$$
f(x)=\frac{1}{2}\left(e^{(1+i) x}+e^{(1-i) x}\right)
$$

and differentiating as a complex function.)
In any case, the important thing is to observe that $\left|f^{(n)}(x)\right|$ grows at most exponentially fast as a function of n. For example, (1) gives easily by induction that $\left|a_{n}\right|+\left|b_{n}\right|<2^{n}$. (The induction step is

$$
\left.\left|a_{n+1}\right|+\left|b_{n+1}\right|=\left|a_{n}+b_{n}\right|+\left|-a_{n}+b_{n}\right| \leq 2\left|a_{n}\right|+2\left|b_{n}\right| .\right)
$$

Alternatively, (2) implies

$$
\left|f^{(n)}(x)\right| \leq \sum_{k=0}^{n}\binom{n}{k} e^{x}=2^{n} e^{x}
$$

Let $[a, b]$ be any finite interval. Without loss of generality we may assume the interval to contain all points $\left(x_{n}\right)$. Then for any $x \in[a, b]$:

$$
\begin{aligned}
\left|E_{n}(x)\right| & =\left|\frac{\left(x-x_{0}\right)\left(x-x_{1}\right) \ldots\left(x-x_{n}\right)}{(n+1)!}\right| \cdot\left|f^{(n+1)}(c)\right| \\
& \leq \frac{(b-a)^{n+1}}{(n+1)!} \cdot 2^{n+1} e^{\max \{a, b\}} \underset{n \rightarrow \infty}{\longrightarrow} 0 .
\end{aligned}
$$

3. Let $\left(x_{1}, y_{1}\right), \ldots\left(x_{n}, y_{n}\right)$ be n data points. The least-squares line corresponding to these points is known to be $y=-2 x+5$. A point $\left(x_{n+1}, y_{n+1}\right)$ is added. Formulate and prove a (simple) necessary and sufficient condition on $\left(x_{n+1}, y_{n+1}\right)$ for the least-squares line corresponding to all $n+1$ data points to still be $y=-2 x+5$.

The condition is $y_{n+1}=-2 x_{n+1}+5$. Let us prove it.

Sufficiency: Suppose $y_{n+1}=-2 x_{n+1}+5$. Let

$$
D_{m}(a, b)=\sum_{k=1}^{m}\left(y_{k}-a x_{k}-b\right)^{2} .
$$

Obviously, for all a and b we have $D_{n+1}(a, b) \geq D_{n}(a, b)$. For $(a, b)=(-2,5)$ we have:

$$
D_{n+1}(-2,5)=D_{n}(-2,5)=\min _{a, b \in \mathbf{R}} D_{n}(a, b) \leq \min _{a, b \in \mathbf{R}} D_{n+1}(a, b) .
$$

Therefore $D_{n+1}(-2,5)=\min _{a, b \in \mathbf{R}} D_{n}(a, b)$.
Necessity: Suppose $y=-2 x+5$ is also the new least-squares line. This means that:

$$
\bar{y}_{n}=-2 \bar{x}_{n}+5, \quad \bar{y}_{n+1}=-2 \bar{x}_{n+1}+5 .
$$

Now

$$
\bar{x}_{n+1}=\frac{1}{n+1} \sum_{i=1}^{n+1} x_{i}=\frac{n}{n+1} \bar{x}_{n}+\frac{1}{n+1} x_{n+1}
$$

and similarly

$$
\bar{y}_{n+1}=\frac{n}{n+1} \bar{y}_{n}+\frac{1}{n+1} y_{n+1} .
$$

Consequently:

$$
\left(\frac{n}{n+1} \bar{y}_{n}+\frac{1}{n+1} y_{n+1}\right)+2\left(\frac{n}{n+1} \bar{x}_{n}+\frac{1}{n+1} x_{n+1}\right)=5 .
$$

It follows that

$$
\frac{n}{n+1}\left(\bar{y}_{n}+2 \bar{x}_{n}\right)+\frac{1}{n+1}\left(y_{n+1}+2 x_{n+1}\right)=5,
$$

and hence

$$
\frac{n}{n+1} \cdot 5+\frac{1}{n+1}\left(y_{n+1}+2 x_{n+1}\right)=5 .
$$

This easily yields

$$
y_{n+1}+2 x_{n+1}=5 .
$$

4. The integral $\int_{0}^{1} \sqrt{1-x} d x$ is estimated by dividing the interval $[0,1]$ into n equal subintervals and employing the rectangle rule for each. For which n will the error be at most 0.001 ?

$$
\text { Let } f(x)=\sqrt{1-x} \text {. Then } f^{\prime}(x)=-\frac{1}{2 \sqrt{1-x}} \text {. }
$$

Let E_{1} be the error in the interval $\left[0,1-\frac{1}{n}\right]$ and E_{2} the error in the interval $\left[1-\frac{1}{n}, 1\right]$. We have:

$$
\begin{aligned}
\left|E_{1}\right| & \leq \frac{1}{2} \max _{x \in[0,1-1 / n]}\left|f^{\prime}(x)\right| \cdot\left(1-\frac{1}{n}\right) \cdot \frac{1}{n} \\
& =\frac{1}{2} \cdot \frac{1}{2 \sqrt{1-(1-1 / n)}} \cdot\left(1-\frac{1}{n}\right) \cdot \frac{1}{n}=\frac{1-1 / n}{4 \sqrt{n}} .
\end{aligned}
$$

Since f is decreasing and non-negative in $[0,1]$, the error on $\left[1-\frac{1}{n}, 1\right]$ is at most $f(1-1 / n) \cdot \frac{1}{n}$, so that:

$$
\left|E_{2}\right| \leq \sqrt{1-(1-1 / n)} \cdot \frac{1}{n}=\frac{1}{n^{3 / 2}}
$$

Hence:

$$
|E| \leq\left|E_{1}\right|+\left|E_{2}\right| \leq \frac{1-1 / n}{4 \sqrt{n}}+\frac{1 / n}{\sqrt{n}}=\frac{1+3 / n}{4 \sqrt{n}}
$$

Thus n has to be a little more than $250^{2}=62500$.
A better bound on the error may be obtained if we divide the interval $[0,1]$ not to the parts $\left[0,1-\frac{1}{n}\right]$ and $\left[1-\frac{1}{n}, 1\right]$, but to $\left[0,1-\frac{a_{n}}{n}\right]$ and $\left[1-\frac{a_{n}}{n}, 1\right]$, where a_{n} is to be determined. We obtain

$$
\left|E_{1}\right| \leq \frac{1}{2} \max _{x \in\left[0,1-a_{n} / n\right]}\left|f^{\prime}(x)\right| \cdot\left(1-\frac{a_{n}}{n}\right) \cdot \frac{1}{n} \leq \frac{1}{4 \sqrt{n a_{n}}}
$$

and

$$
\left|E_{2}\right| \leq \sqrt{1-\left(1-a_{n} / n\right)} \cdot \frac{1}{n}=\left(\frac{a_{n}}{n}\right)^{3 / 2}
$$

Taking $a_{n} \approx \sqrt{n} / 2$ we have:

$$
|E| \leq \frac{1}{4 \sqrt{n \sqrt{n} / 2}}+\left(\frac{\sqrt{n}}{2 n}\right)^{3 / 2}=\frac{1}{\sqrt{2} n^{3 / 4}}
$$

With this bound, we see that already $n \geq \frac{10000}{2^{2 / 3}}$ provides an estimate with the required accuracy.

A still better bound is obtained by observing that the function is concave, so that, using the preceding method, the error on $\left[1-\frac{a_{n}}{n}, 1\right]$ is actually at most half of our previous bound:

$$
\left|E_{2}\right| \leq \frac{1}{2} \cdot\left(\frac{a_{n}}{n}\right)^{3 / 2}
$$

This time we take $a_{n} \approx \sqrt{n / 2}$ to get $|E| \leq\left(\frac{1}{2 n}\right)^{3 / 4}$, which shows that it suffices to take $n \geq 5000$.

An altogether different possibility is to notice that, since f is decreasing, the rectangle rule yields an upper bound on the value of the integral, whereas the analogous method of taking the right endpoint of each subinterval yields a lower bound. Hence:

$$
|E|<\sum_{i=0}^{n-1}\left(f\left(\frac{i}{n}\right)-f\left(\frac{i+1}{n}\right)\right) \cdot \frac{1}{n}=(f(1)-f(0)) \cdot \frac{1}{n}=\frac{1}{n} .
$$

Thus even $n \geq 1000$ suffices.
One can improve the last method even further by observing that the concavity of f implies that the error on each subinterval is at most half our previous bound. This yields $|E| \leq \frac{1}{2 n}$, which shows that already $n \geq 500$ is good enough.

