
Final #1 - Questions and Solutions

1. a. Let x0 be a real number. Define a sequence (xn)∞n=1 by:

xn+1 = sinxn, n = 0, 1, 2, . . . .

Using the fact that | sinx| < |x| for every x 6= 0, show that the sequence xn

converges to the unique fixed point x = 0 of the function g(x) = sinx.

We first note that, since x1 = sinx0, we must have |x1| ≤ 1. If x1 = 0, then
all subsequent terms of the sequence are 0. Let us deal with the case x1 > 0.
(The case x1 < 0 is analogous.) A straightforward induction shows that in this
case the sequence is decreasing, and all its terms are positive. Hence it converges
to a finite limit ξ. As g is continuous, ξ is a fixed point of g. Since | sinx| < |x|
for every x 6= 0, the unique fixed point is 0, whence ξ = 0.

b. Is the convergence linear, slower or faster?

Let en be the distance from the fixed point after n steps, namely en = ξ−xn.
Since sin x

x −→
x→0

1, we have
en+1

en
−→

n→∞
1 .

Thus, the convergence is sub-linear.

c. Write MATLAB code designed to calculate (approximately) the fixed
point in question. Given an initial value a for x0, the xn’s are consecutively
calculated up to the first index L for which xL+1 = xL.

function [x, niter] = prob1c(a)
niter = 0;
x = [a];
tmp = a;
ftmp = sin(tmp);
while tmp ∼= ftmp

x = [xftmp];
tmp = ftmp;
ftmp = sin(tmp);
niter = niter + 1;

end

d. Suppose the above MATLAB code is run on a system working with
the IEEE standard, double prcision and round-to-nearest mode, and the initial
value of x0 lies within the interval

[

π
4 , π

2

]

. Find (the order of magnitude of) xL.



In this case the sequence xn decreases to zero. On the computer, it will
decrease as long as xk and sinxk are distinguishable. Since, for xk ≈ 0 we

sinxk ≈ xk − x3
k

6 , we have to find when xk − x3
k

6 is rounded to xk itself and when

to a number strictly smaller. Let xk = m · 2E with 1 ≤ m ≤ 2. Then
x3

k

6 will be
big enough to change xk exactly if

x3
k

6
≥ 2−54 ∗ 2E .

To find the order of magnitude of the required threshold, we replace 2E on the
right hand side by xk to obtain the condition

x3
k

6
≥ 2−54xk .

Equivalently, we see that sinxk is rounded to a number smaller than xk (approx-
imately) if xk ≥

√
6 · 2−27.

The above calculations actually suffice to obtain the precise result. In fact,
it hints that the threshold is somehwere between 2−26 and 2−25. For xk in this
region, the exact condition is

x3
k

6
≥ 1

2
· 2−52 · 2−26 ,

which gives
xk ≥ 3

√
3 · 2−26 .

Thus xL = 3
√

3 · 2−26.

2. Let (xn)∞n=1 be a sequence of distinct points on the real line, and let
f(x) = ex cos x. For each n, let Pn denote the interpolation polynomial of degree
not exceeding n, coinciding with f at the points x0, x1, . . . , xn.

a. Prove that we do not necessarily have Pn(x) −→
n→∞

f(x) for every x ∈
R.

In fact, let xn = nπ + π
2 . Since f vanishes at all the points xn, each Pn

is the zero polynomial, and therefore the required convergence convergence does
not hold at points which are not zeros of f .

b. Show that if (xn)∞n=1 then Pn(x) −→
n→∞

f(x) for every x ∈ R; moreover,

the convergence is uniform on any finite interval.

One shows easily by induction that for all n we have

f (n)(x) = anex cos x + bnex sin x

for appropriately chosen constants an, bn.
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It is possible, in various ways, to give explicit expressions for an and bn. For
example, differentiating the formula for f (n)(x), we easily obtain the following
recursion:

an+1 = an + bn,

bn+1 = −an + bn .
(1)

As the recursion is linear, and with constant coefficients, it is possible to solve
explicitly for an and bn. Another possibility is by starting with:

f (n)(x) =
n

∑

k=0

(

n

k

)

ex
(k)

sin(n−k) x =
n

∑

k=0

(

n

k

)

ex sin(n−k) x . (2)

(Still another option is by rewriting the function in the form

f(x) =
1

2

(

e(1+i)x + e(1−i)x
)

,

and differentiating as a complex function.)
In any case, the important thing is to observe that |f (n)(x)| grows at most

exponentially fast as a function of n. For example, (1) gives easily by induction
that |an| + |bn| < 2n. (The induction step is

|an+1| + |bn+1| = |an + bn| + | − an + bn| ≤ 2|an| + 2|bn| .)

Alternatively, (2) implies

|f (n)(x)| ≤
n

∑

k=0

(

n

k

)

ex = 2nex .

Let [a, b] be any finite interval. Without loss of generality we may assume
the interval to contain all points (xn). Then for any x ∈ [a, b]:

|En(x)| =

∣

∣

∣

∣

(x − x0)(x − x1) . . . (x − xn)

(n + 1)!

∣

∣

∣

∣

·
∣

∣

∣
f (n+1)(c)

∣

∣

∣

≤ (b − a)n+1

(n + 1)!
· 2n+1emax{a,b} −→

n→∞
0 .

3. Let (x1, y1), . . . (xn, yn) be n data points. The least-squares line corre-
sponding to these points is known to be y = −2x + 5. A point (xn+1, yn+1)
is added. Formulate and prove a (simple) necessary and sufficient condition on
(xn+1, yn+1) for the least-squares line corresponding to all n + 1 data points to
still be y = −2x + 5.

The condition is yn+1 = −2xn+1 + 5. Let us prove it.
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Sufficiency: Suppose yn+1 = −2xn+1 + 5. Let

Dm(a, b) =

m
∑

k=1

(yk − axk − b)
2

.

Obviously, for all a and b we have Dn+1(a, b) ≥ Dn(a, b). For (a, b) = (−2, 5) we
have:

Dn+1(−2, 5) = Dn(−2, 5) = min
a,b∈R

Dn(a, b) ≤ min
a,b∈R

Dn+1(a, b) .

Therefore Dn+1(−2, 5) = mina,b∈R Dn(a, b).

Necessity: Suppose y = −2x + 5 is also the new least-squares line. This
means that:

yn = −2xn + 5, yn+1 = −2xn+1 + 5 .

Now

xn+1 =
1

n + 1

n+1
∑

i=1

xi =
n

n + 1
xn +

1

n + 1
xn+1

and similarly

yn+1 =
n

n + 1
yn +

1

n + 1
yn+1 .

Consequently:

(

n

n + 1
yn +

1

n + 1
yn+1

)

+ 2

(

n

n + 1
xn +

1

n + 1
xn+1

)

= 5 .

It follows that

n

n + 1
(yn + 2xn) +

1

n + 1
(yn+1 + 2xn+1) = 5 ,

and hence
n

n + 1
· 5 +

1

n + 1
(yn+1 + 2xn+1) = 5 .

This easily yields

yn+1 + 2xn+1 = 5 .

4. The integral

∫ 1

0

√
1 − x dx is estimated by dividing the interval [0, 1] into

n equal subintervals and employing the rectangle rule for each. For which n will
the error be at most 0.001?

Let f(x) =
√

1 − x. Then f
′

(x) = − 1
2
√

1−x
.
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Let E1 be the error in the interval
[

0, 1 − 1
n

]

and E2 the error in the interval
[

1 − 1
n , 1

]

. We have:

|E1| ≤
1

2
max

x∈[0,1−1/n]

∣

∣

∣
f

′

(x)
∣

∣

∣
·
(

1 − 1

n

)

· 1

n

=
1

2
· 1

2
√

1 − (1 − 1/n)
·
(

1 − 1

n

)

· 1

n
=

1 − 1/n

4
√

n
.

Since f is decreasing and non-negative in [0, 1], the error on
[

1 − 1
n , 1

]

is at most
f(1 − 1/n) · 1

n , so that:

|E2| ≤
√

1 − (1 − 1/n) · 1

n
=

1

n3/2
.

Hence:

|E| ≤ |E1| + |E2| ≤
1 − 1/n

4
√

n
+

1/n√
n

=
1 + 3/n

4
√

n
.

Thus n has to be a little more than 2502 = 62500.
A better bound on the error may be obtained if we divide the interval [0, 1]

not to the parts
[

0, 1 − 1
n

]

and
[

1 − 1
n , 1

]

, but to
[

0, 1 − an

n

]

and
[

1 − an

n , 1
]

,
where an is to be determined. We obtain

|E1| ≤
1

2
max

x∈[0,1−an/n]

∣

∣

∣
f

′

(x)
∣

∣

∣
·
(

1 − an

n

)

· 1

n
≤ 1

4
√

nan

and

|E2| ≤
√

1 − (1 − an/n) · 1

n
=

(an

n

)3/2

.

Taking an ≈ √
n/2 we have:

|E| ≤ 1

4
√

n
√

n/2
+

(√
n

2n

)3/2

=
1√

2n3/4
.

With this bound, we see that already n ≥ 10000
22/3 provides an estimate with the

required accuracy.
A still better bound is obtained by observing that the function is concave,

so that, using the preceding method, the error on
[

1 − an

n , 1
]

is actually at most
half of our previous bound:

|E2| ≤
1

2
·
(an

n

)3/2

.

This time we take an ≈
√

n/2 to get |E| ≤
(

1
2n

)3/4
, which shows that it suffices

to take n ≥ 5000.
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An altogether different possibility is to notice that, since f is decreasing, the
rectangle rule yields an upper bound on the value of the integral, whereas the
analogous method of taking the right endpoint of each subinterval yields a lower
bound. Hence:

|E| <
n−1
∑

i=0

(

f

(

i

n

)

− f

(

i + 1

n

))

· 1

n
= (f (1) − f (0)) · 1

n
=

1

n
.

Thus even n ≥ 1000 suffices.
One can improve the last method even further by observing that the con-

cavity of f implies that the error on each subinterval is at most half our previous
bound. This yields |E| ≤ 1

2n , which shows that already n ≥ 500 is good enough.
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