
Final #2

Mark the correct answer in each part of the following questions.

1. We are working with a system implementing the IEEE standard with
single precision and rounding to the nearest. Denote by ⊕ the binary
operation of addition, as performed on floating point numbers in our
system, and denote analogous operations similarly.

(a) Let x be a floating point number belonging to [2−25, 2−22).

(i) If x ≤ 2−24 then x⊕x�x = x, while otherwise x⊕x�x > x.

(ii) If x ≤ 2−47/2 then x⊕x�x = x, while otherwise x⊕x�x > x.

(iii) If x ≤ 2−23 then x⊕x�x = x, while otherwise x⊕x�x > x.

(iv) If x ≤ 2−45/2 then x⊕x�x = x, while otherwise x⊕x�x > x.

(v) None of the above.

(b) Consider the Matlab code section

n=0;

left=1;

right=2;

middle=(left+right)/2;

while((left<middle) && (middle<right))

if (middle*middle<2)

left=middle;

else

right=middle;

end;

middle=(left+right)/2;

n=n+1;

end
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We run the code on a system with the specifications listed at the
beginning of the question. After the code is run we have

(i) n = 23, middle ≈ 1.33.

(ii) n = 23, middle ≈ 1.41.

(iii) n = 24, middle ≈ 1.33.

(iv) n = 24, middle ≈ 1.41.

(v) None of the above.

2. (a) Consider the equation:

− arccos
(
esinx

)
= x.

We use a fixed point iteration with g(x) = − arccos
(
esinx

)
to solve

the equation near the solution ξ = 0, starting at a point x0. (Note
that the expression on the left-hand side of the equation is defined
in a left neighborhood of ξ only. Thus, we shall relate only to such
neighborhoods below.)

(i) There is no left neighborhood of ξ with the property that, if
x0 belongs to this neighborhood, then we obtain convergence
to ξ.

(ii) There is a left neighborhood of ξ such that, if x0 belongs to
this neighborhood, then we obtain linear convergence to ξ.
The convergence is slightly slower than that achieved by the
bisection method (in general, when the function is defined in
a two-sided neighborhood of the root).

(iii) There is a left neighborhood of ξ such that, if x0 belongs
to this neighborhood, then we obtain linear convergence to ξ.
The convergence is slightly faster than that achieved by the
bisection method (in general, when the function is defined in
a two-sided neighborhood of the root).

(iv) There is a left neighborhood of ξ such that, if x0 belongs to
this neighborhood, then we obtain at least quadratic conver-
gence to ξ.

(v) None of the above.
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(b) Consider the equations

ln cosx− sinx = 0

and
ln cosx− sin2 x = 0.

Newton’s method is employed to solve the equations. If we start
sufficiently close to the common root ξ = 0 of the equations then:

(i) The convergence is linear for both equations. For the first
equation it is slightly faster than for the bisection method,
while for the second it is at almost the same rate.

(ii) The convergence is linear for the first equation and at least
quadratic for the second.

(iii) The convergence is at least quadratic for the first equation
and linear for the second.

(iv) The convergence is at least quadratic for both equations.

(v) None of the above.

3. (a) Let D be the space of all real continuous functions on the inter-
val [a, b]. Denote by D+ the subset of D, consisting of all those
functions having the property that the error in approximating∫ b
a
f(x)dx, when subdividing the interval in any way and approx-

imating the integral on any of the sub-intervals by the rectangle
rule, is positive.

(i) D+ is closed under multiplication by positive constants and
under addition, but not under subtraction and under multi-
plication.

(ii) D+ is closed under multiplication by positive constants, but
not under addition, but not under subtraction and under mul-
tiplication.

(iii) D+ is closed under addition and subtraction, but not under
multiplication.

(iv) D+ is closed under addition and multiplication, but not un-
der subtraction.
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(v) None of the above.

(b) We estimate
∫ 1

0
arctg xdx by dividing the interval [0, 1] into n sub-

intervals of equal length, and using the trapezoid rule for each of
them. The error E is approximately

(i) − 1
12n2 .

(ii) − 1
24n2 .

(iii) 1
24n2 .

(iv) 1
12n2 .

(v) None of the above.

(c) We estimate
∫ 2n+1

1
lnxdx by dividing the interval [1, 2n+ 1] into n

sub-intervals of equal length, and using the midpoint rule for each
of them. The total error E satisfies:

(i)

−1

3

(
1

12
+

1

32
+ . . .+

1

(2n− 1)2

)
< E < −1

3

(
1

32
+

1

52
+ . . .+

1

(2n+ 1)2

)
.

(ii)

−1

3

(
1

32
+

1

52
+ . . .+

1

(2n+ 1)2

)
< E < 0.

(iii)

0 < E <
1

3

(
1

32
+

1

52
+ . . .+

1

(2n+ 1)2

)
.

(iv)

1

3

(
1

32
+

1

52
+ . . .+

1

(2n+ 1)2

)
< E <

1

3

(
1

12
+

1

32
+ . . .+

1

(2n− 1)2

)
.

(v) None of the above.

4. (a) An approximation formula of the form∫ 1

0

f(x)dx ≈ w1f(0) +
1

4
f(x2) + w3f

(
5

8

)
,

with some appropriate weights w1, w3 and point x2 ∈ [0, 1], is
given, that is completely accurate in case f is a polynomial of
degree not exceeding 2. The point x2 lies in the interval
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(i) [0.1, 0.25].

(ii) (0.25, 0.4].

(iii) (0.4, 0.55].

(iv) (0.55, 0.7].

(v) None of the above.

(b) We are looking for an approximation formula of the form∫ π

−π
f(x)dx ≈ w1f(x1) + w2f(x2),

with some appropriate weights w1, w2 and points x1, x2 ∈ [−π, π],
that will be completely accurate in case f is any function of the
form

f(x) = a sinx+ b sin2 x+ c cosx+ d cos2 x

with constants a, b, c, d. Up to interchanging (w1, x1) and (w2, x2),

(i) there exists exactly one choice of weights and points.

(ii) there exist exactly two choices of weights and points.

(iii) there exist exactly four choices of weights and points.

(iv) there exist infinitely many choices of weights and points.

(v) None of the above.
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Solutions

1. (a) Take x = 3 · 2−26 ∈ [2−25, 2−24]. Then

x⊕ x� x = 2−25 · 1.12 ⊕ 2−49 · 1.0012

= 2−25 ·
(
1.12 ⊕ 2−24 · 1.0012

)
= 2−25 ·

(
1.12 ⊕ 0. 00 . . . 0︸ ︷︷ ︸

23

|10012

)
= 2−25 · 1. 10 . . . 12︸ ︷︷ ︸

23

= 3 · 2−26 + 248 > x.

Thus, (v) is true.

(b) Before the first iteration, the values (in binary) are:

left = 1, right = 10, middle = 1.1.

Consider the values at the end of the first few iterations. In or-
der to realize how the numbers behave, we use, in each row, the
maximal number of digits required to represent all three numbers,
left, right, middle.

n left right middle

1 1.00 1.10 1.01
2 1.010 1.100 1.011
3 1.0110 1.1000 1.0111
4 1.01100 1.01110 1.01101
5 1.011010 1.011100 1.011011

At each iteration we divide the current interval into two, contin-
uing to work with the one containing

√
2, so obviously middle ≈√

2. Notice that at the n-th iteration, we need precisely n + 1
binary digits after the point to represent middle, since its last
digit is ‘1’. Furthermore, due to the fact that the first n fractional
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digits are identical either to those of left or to those of right, at
the end of the 23-rd round, the program does not enter the 24-th
iteration, since middle will either be equal to left or to right at
that moment.

Thus, (ii) is true.

2. (a) Since we care only about a left-neighborhood of ξ, to fix ideas we
will consider the interval [−π/2, 0]. We have

g′(x) =
esinx cosx√
1− e2 sinx

, x ∈ [−π/2, 0).

Obviously,
lim
x→ξ−

g′(x) =∞,

and therefore the fixed point ξ is not attracting.

Thus, (i) is true.

(b) Set

f1(x) = ln cosx− sinx, f2(x) = ln cosx− sin2 x.

We have
f ′1(x) = − tg x− cosx.

Substituting x = ξ we obtain f ′1(ξ) = −1 6= 0, and therefore the
convergence is at least quadratic for the first equation.

Now we consider the second equation. We have

f ′2(x) = − tg x− sin 2x

and

f ′′2 (x) = − 1

cos2 x
− 2 cos 2x,

and in particular f ′2(ξ) = 0 and f ′′2 (ξ) = −3. Thus, ξ = 0 is a root
of f2 of order 2. The iteration function corresponding to Newton’s
method is:

g2(x) = x− f2(x)

f ′2(x)
.
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Now

lim
x→ξ

g′2(x) = lim
x→ξ

f2(x) · f ′′2 (x)

(f ′2(x))2
,

and by l’Hôpital’s rule we obtain

lim
x→ξ

g′2(x) = lim
x→ξ

f ′2(x)f ′′2 (x) + f2(x)f
(3)
2 (x)

2f ′2(x)f ′′2 (x)

=
1

2
+

1

2
lim
x→ξ

f2(x)f
(3)
2 (x)

f ′2(x)f ′′2 (x)

=
1

2
+

1

2
lim
x→ξ

f2(x)f
(4)
2 (x) + f ′2(x)f

(3)
2 (x)

(f ′′2 (x))2 + f ′2(x)f
(3)
2 (x)

=
1

2
.

Hence the convergence is linear for the second equation, with speed
almost the same as that of the bisection method.

Thus, (iii) is true.

3. (a) For arbitrary functions f1, f2 ∈ D+, and arbitrary constant c ∈ R
consider:

f(x) = f1(x) + f2(x), x ∈ [a, b], (1)

h(x) = cf1(x), x ∈ [a, b]. (2)

Obviously, f and h are continuous on the interval [a, b] and the

total errors Ef and Eh in approximating the integrals
∫ b
a
f(x)dx

and
∫ b
a
h(x)dx, when subdividing the interval in any way to n

sub-intervals and approximating each integral on each of the sub-
intervals by the rectangle rule, respectively, are:

Ef =
n∑
i=1

(∫ xi

xi−1

f(x)dx− f(xi−1)(xi − xi−1)

)
=

n∑
i=1

Ef,i, (3)

and

Eh =
n∑
i=1

(∫ xi

xi−1

h(x)dx− h(xi−1)(xi − xi−1)

)
=

n∑
i=1

Eh,i, (4)
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where x0 = a < x1 < . . . < xn = b are the division points. By (1)
for each subinterval [xi−1, xi] we have

Ef,i =

∫ xi

xi−1

(f1(x) + f2(x))dx− (f1(xi−1) + f2(xi−1))(xi − xi−1)

=

∫ xi

xi−1

f1(x)dx− f1(xi−1)(xi − xi−1) (5)

+

∫ xi

xi−1

f2(x)dx− f2(xi−1)(xi − xi−1)

= Ef1,i + Ef2,i > 0,

since f1, f2 ∈ D+. Similarly, by (2) we have

Eh,i = cEf1,i, (6)

which is positive if and only if c > 0. Therefore by (3) and (4)
we obtain that D+ is closed under addition and under multiplica-
tion by positive constants. (We mention in passing that (5) and
(6) imply, that, for arbitrary fixed division points, the error is a
functional linear on the space of continuous functions.)

Consider the following examples to show that D+ is not closed
under subtraction and under multiplication. Put [a, b] = [0, 1] and

f1(x) = f2(x) = x− 1, x ∈ [0, 1].

Obviously, f1, f2 ∈ D+. For x ∈ [0, 1] set

f3(x) = f1(x)− f2(x) ≡ 0, f4(x) = f1(x) · f2(x) = (x− 1)2,

and denote by E3 and E4 the total errors corresponding to the
approximations of the integrals

∫ 1

0
f3(x)dx and

∫ 1

0
f4(x)dx by the

rectangle rule for any subdivision of [0, 1], respectively. Clearly,
E3 = 0, and since f4(x) is monotonically decreasing on the interval
[0, 1], we have E4 < 0. Therefore f1 − f2, f1 · f2 /∈ D+.

Thus, (i) is true.

(b) Let f(x) = arctg x for x ∈ [0, 1]. We have f ′(x) = 1
1+x2 and

f ′′(x) = − 2x
(1+x2)2

. The total approximation error E of the integral
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∫ 1

0
f(x)dx by dividing the interval [0, 1] into n sub-intervals of

equal length, and using the trapezoid rule for each of them is:

E = −
n∑
i=1

f ′′(ηi) ·
1

12n3
, (ηi ∈ ((i− 1)/n, i/n))

=
n∑
i=1

2ηi
(1 + η2

i )
2
· 1

12n3

=
1

6n2

n∑
i=1

ηi
(1 + η2

i )
2
· 1

n
.

The sum on the right-hand side is a Riemann sum of the function
g(x) = x

(1+x2)2
on the interval [0, 1], multiplied by 1

6n2 . Thus,

E ≈ 1

6n2

∫ 1

0

xdx

(1 + x2)2
=

1

12n2

∫ 2

1

dt

t2
=

1

24n2
.

Thus, (iii) is true.

(c) Let f(x) = lnx for x ∈ [1, 2n + 1]. The division points on the
interval [1, 2n+ 1], corresponding to a division of the interval into
n sub-intervals of equal length (h = 2), are

x0 = 1 < . . . < xi−1 = 2i− 1 < xi = 2i+ 1 < . . . < xn = 2n+ 1.

Thus, the total error is:

E =
n∑
i=1

f ′′(ηi)

24
h3 =

1

3

n∑
i=1

f ′′(ηi), ηi ∈ (2i− 1, 2i+ 1). (7)

We have f ′′(x) = − 1
x2 . Since f ′′ is monotonically increasing on

each sub-interval [2i− 1, 2i+ 1], 1 ≤ i ≤ n, we have:

− 1

(2i− 1)2
< f ′′(ηi) < −

1

(2i+ 1)2
, ηi ∈ (2i− 1, 2i+ 1).

Therefore, by (7) we obtain:

−1

3

(
1

12
+ . . .+

1

(2n− 1)2

)
< E < −1

3

(
1

32
+ . . .+

1

(2n+ 1)2

)
.

Thus, (i) is true.
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4. (a) For the formula in question to be exact for all polynomials up to
degree 2, it needs to hold for the polynomials 1, x, x2. Namely,
the following equalities need to hold:

w1 · 1 + 1
4
· 1 + w3 · 1 = 1,

w1 · 0 + 1
4
· x2 + w3 · 5

8
= 1

2
,

w1 · 02 + 1
4
· x2

2 + w3 ·
(

5
8

)2
= 1

3
.

Equivalently: 
4w1 + 4w3 = 3,

2x2 + 5w3 = 4,

48x2
2 + 75w3 = 64.

A routine calculation yields two solutions of the system,

(a) w1 = 9+
√

417
120

≈ 0.25, w3 = 81−
√

417
120

≈ 0.50, x2 = 15+
√

417
48

≈ 0.74,
and

(b) w1 = 9−
√

417
120

≈ −0.1, w3 = 81+
√

417
120

≈ 0.85, x2 = 15−
√

417
48

≈ −0.11.

Since x2 should belong to [0, 1], the only feasible solution for our
system is the one provided in (a) (with x2 ≈ 0.74).
Thus, (v) is true.

(b) For the formula in question to be exact for any function of the
form f(x) = a sinx + b sin2 x + c cosx + d cos2 x, and using the
equality cos2 x = 1 − sin2 x, it needs to hold for the functions
sinx, cosx, sin2 x, 1. Namely, the following equalities need to
hold: 

w1 sinx1 + w2 sinx2 =
∫ π
−π sinxdx,

w1 cosx1 + w2 cosx2 =
∫ π
−π cosxdx,

w1 sin2 x1 + w2 sin2 x2 =
∫ π
−π sin2 xdx,

w1 · 1 + w2 · 1 =
∫ π
−π 1dx.
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Equivalently: 

w1 sinx1 + w2 sinx2 = 0,

w1 cosx1 + w2 cosx2 = 0,

w1 sin2 x1 + w2 sin2 x2 = π,

w1 · 1 + w2 · 1 = 2π.

One can easily verify that x1, x2 6= ±π/2 and w1, w2 6= 0. Thus,
moving second term on the left-hand side of each of the first two
equations to the right-hand side, and dividing by sides we obtain

tg x1 = tg x2, x ∈ [−π, π].

This yields that we have either

(I) x1 = α, x2 = −π + α,

or
(II) x1 = −α, x2 = π − α,

for some 0 < α < π/2.

Let us start with case (I). By the identities sinα = − sin(−π+α)
and cosα = − cos(−π + α), the first two equations of the system
imply w1 = w2, and by the last equation we have w1 = w2 = π.
Finally, the third equation yields sinα = 1√

2
, which means α = π

4
.

Therefore

x1 =
π

4
, x2 = −3π

4
, w1 = w2 = π,

is the unique solution (up to interchanging (w1, x1) and (w2, x2))
of the system under case (I).
Similarly one can obtain that

x1 = −π
4
, x2 =

3π

4
, w1 = w2 = π,

is the unique solution (up to interchanging (w1, x1) and (w2, x2))
of the system under case (II). Therefore, there exist exactly two
choices of weights and points.
Thus, (ii) is true.
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