
Review Questions

Mark all correct answers in each of the following questions.

1. The first two parts below deal with fixed points of a given function g.
We start at some point x0 and continue according to the iteration
xn+1 = g(xn) for n ≥ 0. In the last four parts, we have various func-
tions f , and want to find zeros of these functions. We start again from
some initial point x0, and continue according to Newton’s method.

(a) Let g(x) = tg x. The function g has a fixed point at every interval
of the form ((k − 1/2)π, (k + 1/2)π) with integer k. However, no
fixed point of g is attracting.

(b) Let g(x) = x tg x. If x0 is sufficiently close to the fixed point 0,
then xn −→

n→∞
0. Moreover, for sufficiently large n, the number of

correct digits in the expansion of xn+1 is approximately twice the
number of correct digits in the expansion of xn.

(c) Let f(x) = x tg x. If x0 is sufficiently close to 0, then xn −→
n→∞

0.

However, the rate of convergence is worse than is usually the case
for Newton’s method; it is roughly the same as the rate of conver-
gence in the bisection method.

(d) Let f(x) = tg 2x. Then for every x0 ∈ (0, π/2) we have xn −→
n→∞

0.

(e) Let f(x) = 3
√

x. Then for every x0 6= 0 we have xn −→
n→∞

0.

(f) Let f(x) =
3
√

x2. Then f is not differentiable at 0, and therefore
there exists no x0 6= 0 for which xn −→

n→∞
0.
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2. (a) Let In1 be the approximation obtained for
∫ π

0
cos xdx, when we di-

vide the interval [0, π] into n equal parts and use the midpoint rule
for each. Let In2 be the analogous quantity if we use Simpson’s
rule instead. Then, for every sufficiently large n, the approxima-
tion In2 is closer to the exact value than is In1.

(b) Let In be the approximation obtained for
∫ π/2

−π/2
sin xdx, when we

divide the interval [−π/2, π/2] into n equal parts and use the
rectangle rule for each. Then:

In ≤
∫ π/2

−π/2

sin xdx ≤ In +
5

n
.

(c) Let In be the approximation obtained for
∫ 1

0
dx

1+x
, when we divide

the interval [0, 1] into n equal parts and use the trapezoid rule for

each. Then the error E =
∫ 1

0
dx

1+x
− In satisfies:

E =
1

12n2
+ o

(
1

n2

)
.

(d) Suppose we employ Simpson’s rule, with division into n subinter-
vals of equal lengths, to estimate integrals. For every sufficiently
large integer d, there exist polynomials P, Q, R, all of degree ex-
actly d, such that the error when estimating

∫ 3

2
P (x)dx is posi-

tive, when estimating
∫ 3

2
Q(x)dx – negative, and when estimating∫ 3

2
R(x)dx – 0. (Hint: You may use the fact that the error in

Simpson’s rule when estimating
∫ b

a
f(x)dx is −f (4)(η)

90
(b − a)5 for

some η ∈ [a, b].)

(e) When estimating
∫ b

a
f(x)dx using Simpson’s rule, the estimate is

in fact
∫ b

a
P2(x)dx for some polynomial P2 of degree at most 2, de-

termined by the fact that it coincides with f at the points a, a+b
2

, b.

If f is continuously differentiable, then
∫ b

a
P ′

2(x)dx is the estimate

for
∫ b

a
f ′(x)dx, obtained by employing the trapezoid rule.

3. (a) Consider Taylor’s polynomial of order n around 0 of the function
f(x) = ex:

P (x) = 1 + x +
x2

2!
+ . . . +

xn

n!
.
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There exist points x0, x1, . . . , xn ∈ [0, 1] such that P (x) is the
interpolation polynomial of degree at most n, coinciding with f
at the points x0, x1, . . . , xn.

(b) Since f(x) = ex grows asymptotically faster than every polyno-
mial, there does not exist a sequence of polynomials (Pn)∞n=0 such
that Pn(x) −→

n→∞
ex uniformly over the whole real line. However,

since g(x) = sin x and all its derivatives are uniformly bounded
over the whole real line, we can find a sequence (xk)

∞
k=0 with the

following property: If Pn denotes for each n the interpolation
polynomial of degree at most n, coinciding with g at the points
x0, x1, . . . , xn, then Pn(x) −→

n→∞
sin x uniformly over the whole real

line.

(c) For each n we can find interpolation polynomials Pn and Qn, of
degrees at most n, coinciding with the functions g(x) = sin x
and h(x) = cos x, respectively, at some points x0, x1, . . . , xn ∈
(0, π/2), such that Pn(x) −→

n→∞
sin x and Qn(x) −→

n→∞
cos x uniformly

over the interval (0, π/2). Consequently, we can find a sequence
of interpolation polynomials for the function l(x) = tg x, which
converges to tg x uniformly over the interval (0, π/2).

(d) Let P be the interpolation polynomial of degree at most 2, coin-
ciding with the function m(x) = log2 x at the points 1, 2, 4. Then
P (3) > m(3).

(e) The estimate f(x0−h)−2f(x0)+f(x0+h)
h2 for f ′′(x0) is actually the value

of P ′′(x0), where P is the interpolation polynomial of degree at
most 2, coinciding with f at the points x0 − h, x0, x0 + h.

4. (a) We want to fit a curve of the form y = ax2 + bx to given data
points (x1, y1), . . . , (xn, yn). Then the parameters a, b, for which
the least-squares curve of that form is obtained, are determined
by a system of two linear equations.

(b) Suppose we linearize the data by replacing y with the variable
Y = y/x. The values of a, b, for which we obtain the least-squares
line for the corresponding data points are the same as the values
calculated in the preceding part.
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(c) We defined the least-squares line as the line for which the sum of
squares of vertical distances between the given data points and
the line is minimal. The line, for which the sum of squares of
horizontal distances between the given data points and the line is
minimal, coincides with the least-squares line.

(d) Suppose we have calculated the least-squares line for given data
points (x1, y1), . . . , (xn, yn). Now a new data point (xn+1, yn+1) is
adjoined to the set. Then the least-squares line for the augmented
data set coincides with the old line if and only if the newly added
point (xn+1, yn+1) lies on the old line.

Solutions

1. (a) Since g is continuous in every interval of the form ((k−1/2)π, (k+
1/2)π), and it converges to −∞ and ∞ as the argument converges
to (k − 1/2)π and (k + 1/2)π), respectively, it must have a fixed
point in each such interval. Since g′(x) = 1/ cos2 x ≥ 1 for each
x, no fixed point may be attracting.

(b) Since g′(x) = x/ cos2 x + tg x, we have g′(0) = 0. Hence the
fixed point 0 is attracting, and the convergence is quadratic, which
means that the number of correct digits in the expansion of xn+1

is indeed approximately twice the number of correct digits in the
expansion of xn. (In fact, in this particular case, one can readily
verify by induction that, if |x0| < π/4, then the sequence converges
monotonically to 0. Moreover, since tg x behaves asymptotically
as x near 0, we have g(x) ≈ x2, so that the convergence is clearly
quadratic.)

(c) Usually, Newton’s method yields quadratic convergence. However,
in our case f ′(0) = 0 (as shown for the function g of part (b)),
which is a problem in Newton’s method. Indeed, we iterate for
the function

g(x) = x− x tg x

x/ cos2 x + tg x
.

Hence:

g(x) = x− cos x · sin x/x

1 + cos x · sin x/x
· x .
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Since limx→0 sin x/x = 1, the function g(x) behaves asymptoti-
cally as x/2 near 0. Hence, for x0 sufficiently close to 0, the se-
quence (xn) behaves roughly as C/2n, so that the convergence is at
a rate similar to that obtained when using the bisection method.

(d) The function f is increasing and convex in the interval (0, π/2),
Therefore, the tangent to the graph at any point is below the
graph throughout this interval, which shows that the sequence
(xn) is positive and strictly decreasing. Its limit is therefore non-
negative, belongs to the interval [0, π/2), and is a zero of f . Hence
this limit must be 0.

(e) We iterate the function

g(x) = x− x1/3

1
3
· x−2/3

= −2x.

Thus, xn = (−2)nx0, which does not converge for any x0 6= 0.

(f) The function f is indeed not differentiable at 0. However, we
iterate the function

g(x) = x− x2/3

2
3
· x−1/3

= −x

2
,

which yields xn = (−1/2)nx0 −→
n→∞

0.

Thus, (a), (b), (c) and (d) are true.

2. (a) Since cos x is anti-symmetric with respect to the line x = π/2, it is
easy to see that the contributions to In1 of every two sub-intervals
of the form [(k − 1)π/n, kπ/n] and [(n − k)π/n, (n − k + 1)π/n]
cancel each other, and for odd n the contribution of the middle
interval [(n − 1)π/2n, (n + 1)π/2n] is 0. Hence In1 is 0, which
is the value of the integral under investigation. Namely, In1 is
completely accurate for each n. (It is easily verified that the same
holds for In2.)

(b) Since the integrand increases throughout the interval, the error is
positive on any sub-interval, and hence the total error is positive
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as well, namely In ≤
∫ π/2

−π/2
sin xdx. According to the theoretical

bound on the error

E ≤ 1

2
max

x∈[−π/2,π/2]
cos x·(π/2−(−π/2))· π/2− (−π/2)

n
=

π2

2n
<

5

n
.

(c) The integrand is convex in the interval (as can be verified by
differentiating it twice and noticing that the obtained expression
is positive throughout the interval). Hence the error when using
the trapezoid rule is negative.

(d) Let d ≥ 6. According to the estimate for the error in Simpson’s
rule, this error is negative for both f(x) = xd and f(x) = xd−1.
Consider the polynomials f(x) = xd +axd−1 for real a. According
to the above, the error is clearly negative if a is non-negative (or
negative of sufficiently small absolute value), and is positive for
sufficiently negative a. Since the error is clearly linear as a function
of a, it must vanish for some intermediate value of a.

(e) The estimate for
∫ b

a
f ′(x)dx is (b−a)·f

′(a)+f ′(b)
2

, whereas
∫ b

a
P ′

2(x)dx =
P2(b)− P2(a) = f(b)− f(a) (which is actually accurate).

Thus, (b) and (d) are true.

3. (a) Since

ex = 1 + x +
x2

2!
+ . . . +

xn

n!
+ . . . , x ∈ R,

we have ex > P (x) for all x > 0. In other words, the only point
in [0, 1] where ex = P (x) is 0, and therefore P (x) cannot be an
interpolation polynomial of f for n ≥ 1.

(b) The claim regarding f is indeed correct for the reason stated in the
text. However, the claim regarding g is false for a similar reason.
In fact, if Pn is not a constant polynomial, then Pn(x) goes to
±∞ as x → ±∞, and hence Pn cannot be uniformly close to g on
the whole real line. On the other hand, since g assumes all values
between −1 and 1, if Pn is constant, then Pn(x) is at a distance
of at least 1 from g(x) for some values of x.
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(c) The claims regarding the existence of Pn and Qn indeed follow
immediately from the observation that, if all derivatives of some
function are uniformly bounded throughout the interval by some
constant (same constant for all derivatives), then any sequence of
interpolation polynomials for that function, based on more and
more interpolation points, converges uniformly to the function.
However, as l is not bounded in the interval, no sequence of poly-
nomials can possibly converge to l uniformly.

(d) According to the theorem regarding the error of the interpolation
polynomial, taking x0 = 1, x1 = 2, x3 = 4 and x = 3, we obtain

E2(3) =
(3− 1)(3− 2)(3− 4)

(2 + 1)!
· 2

η3 ln 2
, (1 ≤ η ≤ 4).

As the expression on the right-hand side is negative, we get P (3) >
m(3).

(e) Writing down Lagrange’s interpolation polynomial, and differenti-

ating it twice, we indeed obtain the expression f(x0−h)−2f(x0)+f(x0+h)
h2 .

Thus, (d) and (e) are true.

4. (a) The parameters a, b of the required curve are determined by the
condition that the function

D(a, b) =
n∑

i=1

(
ax2

i + bxi − yi

)2

assumes for them its minimum. Now:

1

n
D(a, b) = x4a2 + x2b2 + y2 + 2x3ab− 2x2ya− 2xyb.

Since D is quadratic both as a function of a and as a function of
b, with positive leading coefficients for both, the optimal a, b are
determined by:

a = −x3b+x2y

x4
,

b = −x3a+xy

x2
.
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Simplifying the equations, we obtain:

x4a + x3b = x2y,

x3a + x2b = xy.

(b) For the new variables, the data points are (x1, y1/x1), . . . , (xn, yn/xn).
The parameters a, b are given by the formula for the least-squares
line for these data points:

a = y−x·y/x

x2−x2 ,

b = x2·y/x−x·y
x2−x2 .

Obviously, these values of a and b do not satisfy the linear equa-
tions satisfied by the a and b of the preceding part.

(c) Consider the line y = ax + b, for which the sum of squares of
horizontal distances between the given data points and the line is
minimal. Rewriting the equation of the line in the form x = 1

a
y− b

a
,

we see that the requirement is for parameter values a, b for which
the function

D(a, b) =
n∑

k=1

(
1

a
yk −

b

a
− xk

)2

attains its minimum. Employing the formula for the least-squares
line, we obtain the values

1
a

= yx−y·x
y2−y2

− b
a

= y2·x−y·yx

y2−y2 .

We see that the expression obtained for a, for example, is not the
inverse of the expression for a in the least-squares line. (Indeed,
if one takes random data with at least 3 points, the values of a
obtained in the two ways will be distinct.)

(d) The parameter values a, b of the least-squares line, corresponding
to the initial data, are those minimizing the function

D1(a, b) =
n∑

k=1

(axk + b− yk)
2 ,
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while those of the updated line are those minimizing the function

D2(a, b) =
n+1∑
k=1

(axk + b− yk)
2 .

For any a, b we have D2(a, b) ≥ D1(a, b). If (xn+1, yn+1) lies on the
old line, then the extra term in the sum for D2(a, b) vanishes for
the values of a, b minimizing D1(a, b), so that those values clearly
minimize D2(a, b) as well. Hence the two lines coincide in this
case. Conversely, suppose the two lines coincide. Substituting in
the formula for b, we get:

1

n + 1

n+1∑
k=1

yk − a · 1

n + 1

n+1∑
k=1

xk =
1

n

n∑
k=1

yk − a · 1

n

n∑
k=1

xk.

Routine calculations yield:

yn+1 − axn+1 =
1

n

n∑
k=1

yk − a · 1

n

n∑
k=1

xk.

Thus, the additional point lies on the initial least-squares line.

Thus, (a) and (d) are true.
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