
Numerical Analysis

Exercises

1 MATLAB

1. Given: A =

(
1 2
3 2

)
, v =

(
2
3

)
Use MATLAB to check the veracity of the following propositions:

(a) The vector v is an eigenvector of A.

(b) The vector v is an eigenvector of the inverse to A.

(c) The vector v is an eigenvector of the transpose of A.

(d) The vector v is an eigenvector of A multiplied by itself.

(e) The vector v is an eigenvector of B , where Bij = A2
ij.

Present your code (one line for each proposition should be enough).
Note: In order to find C, where Cij = Aij/Bij, you may use the
MATLAB statement: C = A./B.

2. Implement your own MATLAB function for matrix multiplica-
tion.

3.

(a) Write a MATLAB function which, given a vector containing
the digits in the decimal expansion of a non-negative integer L,
provides the binary expansion of L.

(b) Write a MATLAB function which, given a non-negative integer,
provides its binary expansion.

1



4. Consider the following polynomial:

f(x) = 2x3 + 5x2 + 3x + 4. (1)

(a) Use only paper and pencil (no calculator!) to find out the
extreme values of the function.

(b) Use MATLAB symbolic tools to find the extreme values of the
function.

(c) Use MATLAB ‘plot’ and ‘subs’ commands to plot f(x) and
f ′(x) on the interval [−2, 0], on the same figure. Which ex-
treme value is a minimum and which a maximum?
Present your code and plots.
(See plot options at:
www.mathworks.com/access/helpdesk/help/techdoc/ref/plot.html)

2 Introduction

5. Let p = (1/4, 1/4, 1/4, 1/4) and

T =


0 1/2 0 1/2

1/3 0 1/3 1/3
1 0 0 0
0 1/2 1/2 0

 .

(a) Convince yourself using MATLAB that the sequence of vectors
(pT n) converges to some vector p0 as n →∞.

(b) Use MATLAB to find the eigenvalues and eigenvectors of T .
Verify that p0 is a row eigenvector of T , corresponding to the
eigenvalue 1.

6. A person uses the internet to play two games, A and B. After
a game of A he chooses between another game of A and a game of
B with equal probabilities, whereas after a game of B he continues
with another game of B with probability 2/3 and reverts to A with
probability 1/3 only.

(a) Describe the process in terms of a transition matrix T .

(b) Find matrices R and Λ, with Λ diagonal, such that T = R−1ΛR.

(c) Show that T n −→
n→∞

T0 for an appropriate matrix T0.

(d) Find the asymptotic frequencies with which the player plays
each of the games.
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7. Let T = (tij)
d
i,j=1 be a square matrix.

(a) Prove that, if T has the same sum of entries in each row, say∑d
j=1 tij = C for each 1 ≤ i ≤ d, then C is an eigenvalue of

T . In particular, if T is a stochastic matrix, i.e., a matrix with
non-negative entries, such that the sum of entries in each row
is 1, then 1 is an eigenvalue of T .

(b) Prove that the product of stochastic matrices is stochastic as
well. In particular, positive integer powers of stochastic matri-
ces are such.

(c) Prove that all eigenvalues of a stochastic matrix are of absolute
value not exceeding 1.

(d) Suppose T is a stochastic d×d matrix, all of whose eigenvalues,
except for the eigenvalue 1, are of absolute value strictly less
than 1. Suppose also that all eigenvalues are simple. Show
that, for every probability vector (namely, a vector with non-
negative entries, summing up to 1) p, there exists a probability
vector p′ such that pT n −→

n→∞
p′.

(e) Show that the vector p′ from the preceding part is an eigenvec-
tor of T , corresponding to the eigenvalue 1. Conclude that the
vector p′ is the same for all probability vectors p.

(f) For any d ≥ 2, give an example of a d× d stochastic matrix T
and a probability d-vector p such that the sequence (pT n)∞n=0

does not converge.

8. Let T be the transformation of the interval [0, 1), defined in
class.

(a) Which points x ∈ [0, 1) do have the property that T n(x) = 0
for all sufficiently large n?

(b) Prove that, if x is not such a point, then we cannot even have
T n(x) −→

n→∞
0.

9. (requires Probability Theory) Use the Borel-Cantelli Lemma
to prove that, for l = 0, 1, . . . , 2k − 1, if x is chosen randomly
(uniformly) in the interval [0, 1), then there is probability 1 that
the interval [l/2k, (l + 1)/2k) will contain infinitely many terms of
the sequence (T n(x))∞n=0. Conclude that, moreover, if x is chosen
randomly in [0, 1), then there is probability 1 that every interval
[a, b) ⊆ [0, 1) of positive length will contain infinitely many terms of
that sequence.
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10.

(a) Use the infinite binary expansion of real numbers to find a point
x for which the sequence T n(x) is asymptotically 30% of the
time in the subinterval [0, 1/2) (and 70% of the time in the
subinterval [1/2, 1)).

(b) Does there exist a point x such that T n(x) lies in the subinterval
[0, 1/4) asymptotically 40% of the time, in [1/4, 1/2) – 30% of
the time, in [1/2, 3/4) – 20% of the time and in [3/4, 1) – 10%
of the time?

11. Consider the family of transformations Ta, a = 2, 3, . . ., of
the interval [0, 1), defined by Ta(x) = {ax}, where {t} denotes the
fractional part of a real number t.

(a) Given a transformation S of an arbitrary space X (namely,
S is a function from X to itself), a point x ∈ X is eventually
periodic under S if there exist positive integers m < n such that
Sn(x) = Sm(x) (or, equivalently, if the orbit of x under S is
finite). Which points of [0, 1) are eventually periodic under Ta?

(b) In the setup of the preceding part, a point x ∈ X is periodic un-
der S if Sn(x) = x for some n ∈ N. Perform a few experiments,
and conjecture which points of [0, 1) are periodic under Ta.

12. Let Ta be as in the preceding question.

(a) Test how Ta-orbits look like on the computer for odd numbers a.
Do you think the computer results are closer to the truth than
they are for a = 2?

(b) Now consider even values of a. You can easily verify that,
for some of them, the orbits received on the computer contain
much less non-zero terms than in the case of a = 2, whereas for
others these orbits contain just a few less such terms. Explain
this dependence on a.

13. Given any transformation T of an interval (or a more general
space), one may consider orbits {T n(x) : n = 0, 1, 2, . . .} of points x.
In the case considered in class, we saw that, if the transformation is
defined as multiplication by 2 modulo 1, then even a very small error
in the initial determination of x causes the computed values of T n(x)
to be quite far from their true values already for medium-sized n.
Can you suggest a sufficient condition on T under which the initial
error causes only small errors in the computation of T n(x) even for
large values of n? (Hint: Formulate your condition in terms of the
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relation between the size of |T (x2)−T (x1)| and that of |x2−x1| for
various pairs of points (x1, x2).)

3 Nonlinear Equations

14.

(a) Find a zero of the function ex−2 cos x in the interval [0, 1] with
an error not exceeding 0.01 by means of the Bisection Method,
using only a calculator. Does the function have additional ze-
ros?

(b) Same for the function ex sin x− 1.

15. It is required to find all the zeros of the function f defined by

f(x) = xe2x − 10xex − 5ex + 50 .

(a) Show that f has a single zero in the interval [1, 2], another
single zero in the interval [2, 3], and no additional zeros.

(b) How many flops are required to find each of the zeros with
an error not exceeding 10−6 if we use the Bisection Method in
MATLAB?

(c) Simplify the form of f to obtain a better result (still using the
Bisection Method when required).

16. Same as the preceding question for the function

f(x) = xe2x sin x− 2xex − 5ex sin 2x + 20 cos x ,

where the intervals [1, 2] and [2, 3] are replaced by [0, 1] and [1, 2],
respectively.

17.

(a) Suppose instead of the Bisection Method we use “trisection”.
Namely, at each step we divide the current interval into three
equal subintervals, and check which of them contains a zero
of the given function. Assuming that the function contains
a single zero in the interval [a, b], how fast would you expect
the method to converge “on the average”? Compare the result
with that of the Bisection Method. (The analysis should be
rather heuristic. Assume that, at each step, the zero of the
function may belong to each of the three subintervals with equal
likelyhoods.)
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(b) Same as the first part for the following variant of the Bisection
Method: At each step the current interval [a′, b′] is bisected
into two subintervals [a′, (1−α)a′+αb′] and [(1−α)a′+αb′, b′],
where 0 < α < 1 is fixed. How does your answer vary with α?

18. Suggest a few ways of rewriting Problem 14(a) as one of locat-
ing fixed points of an appropriately chosen function.

19.

(a) Let f be differentiable in the interval [a, b]. Assume f has at
least one zero at the interval. Show that Newton’s Method
leads within one step to a zero of f for every starting point
x0 ∈ [a, b] if and only if f is linear.

(b) Construct a function, differentiable on the whole real line, hav-
ing an infinite number of zeros (ξn)∞n=1, so that each ξn has the
following property: There exists an infinite set An such that
Newton’s Method, if started at any point of An, leads within
one step to ξn.

20.

(a) Find a family of cubic polynomials for which Newton’s Method,
if started at an appropriate point, yields a periodic orbit.

(b) (requires Differential Equations) Find a function f defined over
the whole real line with the following properties: 1) f has a
single zero. 2) f is differentiable everywhere, except perhaps
at its zero. 3) Newton’s Method, with any initial point except
for the zero of f , yields a periodic orbit.

21. Consider the following functions from R to itself. Characterize
the fixed points of each, and determine which points are attracted
to each of these under successive applications of the function. If
possible, try to find the rate of convergence of those points attracted
to the fixed points.

(a) g(x) = 2x/3 + 7.

(b) g(x) = 2x + 5.

(c) g(x) = x + x3.

(d) g(x) = x− x3.

(e) g(x) = x + x2.

(f) g(x) = sin x.

6



(g) g(x) = cos x.

(h)

g(x) =

{
x + x3 sin 1

x
, x 6= 0,

0, x = 0.

22. The same as the preceding question for the following functions
from R2 to itself:

(a) g(x, y) = (x/2, y/3).

(b) g(x, y) = (x/2 + 1, y/3 + 2).

(c) g(x, y) = (2x, 3y).

(d) g(x, y) = (x/2 + 1, 3y − 2).

(e) g(x, y) = (x/2 + y, y/2).

(f) g(x, y) = (x + y,−2x + 4y).

(g) g(x, y) = (x cos α− y sin α, x sin α + y cos α), (α ∈ R).

(h) g(x, y) = (x3y4, x−4y3) (here take R2
+ as your domain.)

23. For the following functions all zeros can be explicitly found.
Find the biggest interval you can around each zero such that, start-
ing Newton’s Method at a point belonging to this interval, we obtain
a sequence converging to that zero. Determine the rate of conver-
gence in each case.

(a) f(x) = ex − a.

(b) f(x) = x2 − 8x + 15.

(c) f(x) = (x− a)(x− b).

(d) f(x) = (x− 1)(x− 2)(x− 3).

(e) f(x) = (x− 1)k.

(f) f(x) = sin x.

(g) f(x) = ex − (1 + x + x2/2).

(h) f(x) = ex − 1− sin x , x ∈ [−π/2, π/2] .

(i) f(x) = tg x.

24. Show that, if ξ is a root of order k of f , then, defining g by

g(x) = x− kf(x)/f ′(x) ,

we have g′(ξ) = 0.
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25.

(a) Suppose Newton’s Method is applied to the function f(x) = xk.
Show that, the larger is k, the slower is the convergence.

(b) Consider the function defined by:

f(x) =

{
e−1/x2

, x 6= 0,
0, x = 0 .

Find the rate of convergence of Newton’s Method for this func-
tion. Explain.

26. How does Newton’s Method work for the function f defined
by:

f(x) =

{ √
x, x ≥ 0,

−
√
−x, x < 0.

Explain how this corresponds to the theory.

27. Consider the following two iterative formulas, designed to solve
the equation x2 = a:

xn+1 = xn+a/xn

2
, n = 0, 1, 2, . . . ,

xn+1 = xn+a/xn

2
− (xn−a/xn)2

8xn
, n = 0, 1, 2, . . . .

(a) Show that the first method converges quadratically.

(b) Show that the second method is a third-order method.

(c) Write a MATLAB function implementing the two methods, and
compare their performance.

28. Consider the function defined by:

f(x) =

{
x4 sin 1

x
, x 6= 0,

0, x = 0 .

Does there exist an interval around 0 such that, starting Newton’s
Method at any point x0 of this interval with f(x0) 6= 0 and f ′(x0) 6=
0, we obtain an orbit converging to 0?

29.

(a) Find the general solution of the recursion dn+1 = 2dn+C, where
C is a constant.

(b) What does the first part hint regarding the error in Newton’s
Method?
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30.

(a) Suppose a new method for solving non-linear equations has
been proposed. Given any three points, the first of these is
replaced by a new one, determined by the values of the given
function at the initial points. More precisely, given three con-
secutive approximations xn−2, xn−1, xn to the root, we calculate
the next approximation xn+1 according to the given procedure,
and continue from the triple xn−1, xn, xn+1. Suppose the error
in this method satisfies en+3 ≈ Ken+2en+1e

2
n for some constant

K. Compare the new method with the others we studied.

(b) Same for a method based on the last four points at each stage,
and satisfying en+4 ≈ Ke2

n+3en+2e
4
n+1e

6
n.

4 Systems of Linear Equations

31. Prove that ‖ · ‖1 and ‖ · ‖∞ satisfy all properties of a norm.

32.

(a) Prove that the sum of a finite number of norms is a norm.

(b) Let ‖ · ‖ be a norm on Rn. For which n × n matrices A does
the function ‖ · ‖′, defined by

‖v‖′ = ‖Av‖, v ∈ Rn,

constitute a norm on Rn?

33. Show that for any norm ‖ · ‖ on Rn we have:

‖u− v‖ ≥ |‖u‖ − ‖v‖|, u, v ∈ Rn.

34. Let ‖ · ‖ be any norm on Rn. Show that the function d :
Rn ×Rn−→R, defined by

d(u, v) = ‖u− v‖, u, v ∈ Rn,

is a metric on Rn. Namely, d satisfies the following properties:

(i) d(u, v) ≥ 0 for every u, v ∈ Rn, with equality if and only if
u = v.

(ii) d(u, v) = d(v, u) for every u, v ∈ Rn.
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(iii) d(u, w) ≤ d(u, v) + d(v, w) for every u, v, w ∈ Rn.

35. Prove the following properties of matrix norms:

(a) ‖A‖ ≥ 0 for every n× n matrix A, with equality if and only if
A = 0.

(b) ‖αA‖ = |α| · ‖A‖ for every α ∈ R and n× n matrix A.

(c) ‖A + B‖ ≤ ‖A‖+ ‖B‖ for every two n× n matrices A and B.

(d) ‖AB‖ ≤ ‖A‖ · ‖B‖ for every two n× n matrices A and B.

36. Show that, if A = (aij)
n
i,j=1, then ‖A‖∞ = max1≤i≤n

∑n
j=1 |aij| .

37. Calculate ‖A‖1 for a general n× n matrix A.

38.

(a) Let ‖ · ‖ and ‖ · ‖′ be norms on Rn. Suppose

c1‖v‖ ≤ ‖v‖′ ≤ c2‖v‖, v ∈ Rn,

for some constants c2 ≥ c1 > 0. What relations can you infer
between the corresponding matrix norms?

(b) Provide non-trivial upper and lower bounds for ‖A‖2 in terms
of the entries of A.

39. Calculate the 2-norm of the matrix

A =

(
1 2
3 4

)
.

40. Let A be an n × n matrix over R. Suppose all eigenvalues
λ1, λ2, . . . , λn of A are real and known.

(a) Find a lower bound for ‖A‖ in terms of the eigenvalues of A,
where ‖ · ‖ is any norm.

(b) Show that it is impossible to give an upper bound for ‖A‖ in
terms of the eigenvalues of A alone. (Here you may take any
norm you prefer).

41. Check experimentally using MATLAB that, in general, as the
condition number of the matrix of coefficients increases, so does the
error in the solution, as follows:

10



(a) Select randomly matrices of coefficients A. Next select corre-
sponding vectors b for which the solution of the system Ax = b
is simple and known in advance (say, all the entries of x are 1).
Solve the system and compare the size of the (known) error
vector (measured by the norm of your liking) with the condi-
tion number. (Instead of calculating the condition number, you
may use MATLAB’s cond and rcond.)

(b) Find the size of the errors when A is the Hilbert matrix of
order n (generated in MATLAB by hilb(n)), again with the
solution x simple and known in advance.

42. Exemplify the process of successive improvements, A being
the Hilbert matrix of order n and the solution x simple and known
in advance, for various values of n. When does the process work
indeed to successively improve the solution?

43. For each of the following systems, check whether Jacobi it-
eration converges by calculating explicitly the sequence of errors
(e(t))∞t=0, starting with an arbitrary initial error e(0):

(a)
6x − y = 4
2x + 5y = 12

(b)
2x − 5y = −8
4x − y = 2

(c)
4x + 3y = 10
5x − 4y = −3

44.

(a) Under which conditions on a general 2× 2 system does Jacobi
iteration converge? (Assume that the matrix of coefficients is
invertible and has non-zero diagonal elements.)

(b) Jacobi iteration may be applied to a 2× 2 system in two ways,
namely with the equations in the given order or in the inverse
order. In view of the preceding part, what can be said usually
(i.e., except perhaps for borderline cases) about the conver-
gence of the method for each of these orders?

45. Same as Question 43 for Gauss-Seidel iteration.

46. Show that for a general 2 × 2 system the conditions for the
convergence of Jacobi iteration and those for Gauss-Seidel iteration
usually coincide, but the latter is roughly twice as fast as the first.

47. Consider the system in Question 43.a.
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(a) Write down explicitly the transformation according to which
SOR acts in this case.

(b) For what range of the over-relaxation parameter ω do we have
convergence to the solution of the system?

(c) How does the rate of convergence depend on ω for this particular
system?

48. Check experimentally, using MATLAB, possible and good val-
ues for the parameter ω used in the SOR (Successive Over-Relaxation)
iterative method, as follows. Select 100 random 5 × 5 matrices of
coefficients A, such that the diagonal entries lie in the interval [1, 2]
and the off-diagonal entries in the interval [−0.2, 0.2]. For each such
A, put b = Av, where v = (1, 2, . . . , 5)t. Solve the linear system
Ax = b using SOR for parameter values ω = 1, 1.1, 1.2, . . . , 2, and
some pre-determined number of iterations. How does the mean size
of the error vector (measured by the norm of your liking) depend
on ω? Present your findings on a suitable plot.

5 Numerical Differentiation

49. Suppose f is defined only to the right of the point x, so that
the central difference approximation for f ′(x), namely

f ′(x) =
f(x + h)− f(x− h)

2h
+ O(h2) ,

is inapplicable. Can you suggest an alternative O(h2) approximation
for the required (one-sided) derivative?

50. Prove the approximation, mentioned in class,

f (4)(x) =
−f3 + 12f2 − 39f1 + 56f0 − 39f−1 + 12f−2 − f−3

6h4
+O(h4) ,

where fi = f(x + ih) for each i.

51. Prove that, for any fixed non-zero distinct numbers λ1, λ2, . . . , λk,
one can find an O(hk) approximation for f ′(x) in terms of f(x), f(x+
λ1h), f(x+λ2h), . . . , f(x+λkh). (You may assume f to have as many
derivatives as required.)
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6 Numerical Integration

52. The integral
∫ 1

0
ex

x+1
is to be evaluated to within an error of

0.001 by the rectangle method. Into how many subintervals n do
you need to divide [0, 1] to obtain the required precision? (Try to
minimize n. Ignore computer errors.)

53. The integral
∫ 1

0
(1 −

√
2x− x2)dx has to be approximated by

the rectangle method, with division into n subintervals. Find an n
for which the error is at most 0.001.

54.

(a) Suppose we approximate the integral
∫ b

a
f(x)dx by dividing the

interval [a, b] into n subintervals [xi−1, xi], 1 ≤ i ≤ n, and using
the rectangle method on each of them. For each subinterval
[xi−1, xi] we have an approximation Ii and some error Ei. Now
for each Ei we have an expression, which depends on some
inner point within the interval [xi−1, xi]. Estimate the total

error E =
∑n

i=1 Ei by a certain Riemann integral
∫ b

a
g(x)dx,

which can easily be evaluated (similarly to one of the ideas we

presented in class for the integral
∫ 1

0
exdx, using the trapezoid

rule). Add this estimate
∫ b

a
g(x)dx on the error to the initial

approximation
∑n

i=1 Ii for
∫ b

a
f(x)dx to obtain a (supposedly

better) approximation. What approximation do we get?

(b) Now we use a similar approach, but with the midpoint rule
instead. Write down the approximation you get for the inte-
gral, and prove that it is indeed asymptotically better than the
approximation obtained from the midpoint rule. Namely, the
error is O (h3) (where h = (b− a)/n) instead of O (h2).

55. Consider the function log on the interval
[

1
2
, n + 1

2

]
.

(a) Find the exact value of the integral
∫ n+1/2

1/2
log xdx.

(b) Estimate the integral employing the midpoint rule, with divi-
sion to n subintervals. Using the estimate for the error, obtain
a weak form of Stirling’s formula (providing an asymptotic ex-
pression for n!).

(c) What can you get in the previous part if you use the bound on
the error for each subinterval separately, and not just for the
whole interval?

(d) Repeat the above for the integral
∫ 1+1/2n

1/2n
log xdx.
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56. It is well known that, denoting Hn = 1 + 1
2

+ 1
3

+ . . . + 1
n
, we

have
lim

n→∞
(Hn − log n) = γ,

where γ is Euler’s constant. How much of this do you obtain by

approximating the integral
∫ n+1/2

1/2
dx
x

using the midpoint rule, with

division to n intervals, and estimating the error?

57. Verify directly that, using the trapezoidal rule with division to

n subintervals to estimate the integral
∫ b

a
x2dx, the resulting error

is within the predicted bounds.

58. Verify directly that, using Simpson’s rule with division to n
subintervals to estimate the integral

∫ 1

0
exdx, the resulting error is

within the predicted bounds.

59.

(a) Prove that there exists no approximation formula for
∫ b

a
f(x)dx,

based on the values of f at finitely many points only, which is
completely precise for all polynomials.

(b) Prove that, moreover, for any such approximation formula,
based on the values of f at n points, there exists a polynomial
of degree at most 2n for which the formula gives an imprecise
answer.

(c) Explain why the bound 2n in the preceding part is best possible.

60. Show that Boole’s rule gives the exact value for integrals of
polynomials of degree not exceeding 5.

61. Let (Pn(x))∞n=0 be a sequence of polynomials. Show that, if
deg Pn = n for each n, then {Pn(x) : n = 0, 1, 2, . . .} is a basis of
the space of all polynomials.

62. Verify the following properties of Legendre polynomials:

(a) φ′n(x) = xφ′n−1(x) + nφn−1(x).

(b) φn(x) = xφn−1(x) + x2−1
n

φ′n−1(x).

(c) (n + 1)φn+1(x) = (2n + 1)xφn(x)− nφn−1(x).

(d)
∫ 1

−1
φn(x)2dx = 2n−1

2n+1

∫ 1

−1
φn−1(x)2dx.

(e)
∫ 1

−1
φn(x)2dx = 2

2n+1
.

(f) The set of zeros of φn is symmetric around 0.
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63. Carry out the Gram-Schmidt process for the system {1, x, x2, . . .}
on the interval [−1, 1] to find the polynomials φn(x), 0 ≤ n ≤ 4.

64.

(a) Use Gaussian integration with two and with three division

points to estimate
∫ 1

−1
dx

1+x2 . Compare with the correct value
and verify, for two division points, that the error is within the
allowed limits.

(b) Same for the integral
∫ 1

−1
dx

x+2
.

65. Use Gaussian integration with two and with three division
points to estimate

∫ 1

−1
xndx. What are the absolute and the relative

errors? Explain!

66. Use Gaussian integration with two division points to estimate
the integral

∫ 1

−1
cos πnx dx. Use MATLAB to check how good the

estimate is for various values of n. Do you think that the points ± 1√
3

used for the estimate are more representative for these integrals (for
large n) than random points in [−1, 1]? Explain!

67. Let F denote the vector space of all Riemann-integrable func-
tions over a finite interval [a, b], and let w ∈ F be strictly positive
throughout the interval. Show that the function 〈·, ·〉 : F ×F −→R,
defined by

〈f, g〉 =

∫ b

a

f(x)g(x)w(x)dx, f, g ∈ F,

forms an inner product on F .

68. Verify that each of the following defines an inner product on
the space of polynomials:

(a) 〈P, Q〉 =
∫∞

0
P (x)Q(x)e−xdx.

(b) 〈P, Q〉 =
∫∞
−∞ P (x)Q(x)e−x2

dx.

(c) 〈P, Q〉 =
∫ 1

−1
P (x)Q(x)√

1−x2 dx.

69.

(a) Using the equality
∫∞
−∞ e−x2

dx =
√

π, show that one can calcu-

late
∫∞
−∞ e−x2

P (x)dx precisely for any polynomial P .

(b) Calculate
∫∞

0

√
xe−xdx.
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70. Suppose we are interested in integrals of the form
∫ 1

0
f(x) ln 1

x
dx.

(a) Write down the equations obtained by trying to find an approx-
imation of the form

I = w1f(x1) + w2f(x2) + . . . wkf(xk)

for this integral, which will be precise if f is a polynomial of
degree not exceeding 2k − 1.

(b) Define an appropriate inner product on the space of continuous
real-valued functions on [0, 1], which will be of use for finding
the division points x1, x2, . . . , xk.

(c) Find the division points for k = 2.

7 Interpolation

71. Write down the Taylor polynomial of order n (around 0) of
the function 1

x3+1
. At what interval can it be expected to form a

good approximation to the function?

72.

(a) Prove that there does not exist a polynomial P approximating
the function ex to within a fixed error on the whole line (namely,
such that |ex − P (x)| < C for every x ∈ R, where C is a
constant).

(b) Prove that, if ε > 0 is sufficiently small, then there does not
exist a polynomial P approximating the function sin x to within
an error of ε on the whole line.

73. Let f be a continuous function on the interval [−a, a]. Use
Weierstrass’s Theorem to prove the following:

(a) If f is an even function (i.e., f(−x) = f(x) for every x), then
for every ε > 0 there exists a polynomial P of the form P (x) =∑n

i=0 cix
2i, satisfying |f(x)− P (x)| < ε for every x ∈ [−a, a].

(b) If f is odd, then there exist approximating polynomials of the
form P (x) =

∑n
i=0 cix

2i+1.

74. Use Weierstrass’s Theorem to prove the following:
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(a) If f is a continuous function on [1,∞) and f(x) −→
x→∞

a, then

for every ε > 0 there exists a polynomial P such that |f(x) −
P (1/x)| < ε for every x ∈ [1,∞).

(b) If f is a continuous function on [0,∞) and f(x) −→
x→∞

a, then

for every ε > 0 there exists a polynomial P such that |f(x) −
P (e−x)| < ε for every x ∈ [0,∞).

75. Let f be a continuous function defined on [a, b] and (xk)
∞
k=1 a

sequence of distinct points in the interval. For each n, let Pn denote
the interpolation polynomial of degree at most n−1 coinciding with
f at the points x1, x2, . . . , xn.

(a) Prove that, if f is a polynomial, then Pn = f for sufficiently
large n.

(b) Show by an example that, in general, the sequence (Pn)∞n=1 does
not even need to converge to f as n−→∞.

76. Let f be a function defined on some interval [a, b] and x0, x1, . . . , xn

be distinct points of the interval, such that f is differentiable (at
least) ki times at xi for 0 ≤ i ≤ n (where ki ≥ 0 for each i). Prove
that there exists a polynomial P having the following property:

P (k)(xi) = f (k)(xi), 0 ≤ i ≤ n, 0 ≤ k ≤ ki .

What upper bound can you ensure for the degree of P?

77. Suppose f is defined on an interval [a, b] symmetric around 0
(i.e., a = −b), and the points x0, x1, . . . , xn are symmetric around
0 (i.e., xn−i = −xi for each i). Show that, if f is an even (or odd)
function, then so is the interpolation polynomial.

78. For each of the following functions determine for which values
of n the Taylor polynomial of order n is the interpolation polynomial
of the function for appropriately selected points:

(a) f(x) = ex, x ∈ [0, 2].

(b) f(x) = 1
1+x

, x ∈ [−1
2
, 1

2
].

(c) f(x) = ln(1 + x), x ∈ [−1
2
, 1

2
].

79.

(a) Find the polynomial P3(x) interpolating the function (x
π

+
1) cos x at the points 0, π

4
, π

3
and π

2
.
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(b) Compare the actual error obtained by predicting the value of
the function at the point π

6
using the interpolation polynomial

with the bound on the error guaranteed by the theory.

80. For each of the following functions, check whether every se-
quence (Pn)∞n=0 of interpolation polynomials, interpolating the func-

tion at x
(n)
0 , x

(n)
1 , . . . , x

(n)
n , converges uniformly to the function:

(a) f(x) = xex, x ∈ [a, b].

(b) f(x) = x2ex, x ∈ [a, b].

(c) f(x) = 1
1+x

, x ∈ [0, 1
2
].

(d) f(x) = 1
1−x

, x ∈ [0, 1).

81. For an arbitrary fixed sequence (xn)∞n=0, let Pn interpolate the
function sin x at the points x0, x1, . . . , xn.

(a) Show that the sequence (xn)∞n=0 can be constructed so that the
sequence Pn converges to the function pointwise on the whole
real line (that is, Pn(x) −→

n→∞
sin x for every x ∈ R).

(b) Show that (xn)∞n=0 can be selected so that Pn does not converge
to the function pointwise on the whole line (i.e., there exists at
least one point at which the convergence does not hold).

82. Same as the preceding question for the function ex.

83. Same as the preceding question for the function ex2
.

84.

(a) Use MATLAB to plot the first several interpolation polynomi-
als, based on interpolating Runge’s function

f(x) =
1

1 + x2
, −5 ≤ x ≤ 5,

at equally spaced points, and verify that they form poor ap-
proximations to the function.

(b) Do the same, interpolating at Chebyshev’s points

x
(n)
j = 5 cos

jπ

n
, j = 0, 1, . . . , n .

Verify that this time the polynomials form good approxima-
tions to the function.
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85.

(a) Prove the theorem stated in class regarding the error in the
interpolation polynomial for equally spaced points in the cases
n = 2 and n = 3.

(b) State and prove the analogue for n = 4.

86. Let Pn interpolate f at the points x0, x1, . . . , xn. Find a simple
expression for the polynomial interpolating the function xf(x) at the
same points.

87. Let Pn interpolate f at the points x0, x1, . . . , xn. Find a
simple expression for the polynomial interpolating f at the points
x1, x2, . . . , xn.

88. Recalculate the polynomial P3 of Problem 79 using Newton’s
divided differences.

89. Write a MATLAB function implementing Horner’s rule for
evaluating the value of a polynomial at a given point.

90.

(a) Write a MATLAB function which, given a function f and in-
terpolation points x0, x1, . . . , xn, finds the Newton form of the
interpolation polynomial. Minimize the time and space require-
ments.

(b) Write a MATLAB function which, given a polynomial P in
Newton form, finds its usual representation. Minimize time
and space.

(c) Write a MATLAB function which, given a polynomial P in
Newton form and a point t, calculates the value of P at t.
Minimize time and space.

8 Curve Fitting

91. Prove that the error measures presented in class for testing
the compatibility of a function to given data always satisfy E1(f) ≤
E2(f) ≤ E∞(f), with equalities if and only if f(x1)− y1 = f(x2)−
y2 = . . . = f(xn)− yn.

92. Find the least-squares line for the following data points:
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(a) (−1, 2), (0, 3), (1, 5), (2, 4) .

(b) {(k, k2) : k = 0, 1, . . . , n} .

93. Prove that:

(a) If the data points are symmetric with respect to the origin, then
the least-squares line passes through the origin.

(b) If the data points are symmetric with respect to the y-axis,
then the least-squares line is horizontal.

94. Prove that x̄2 ≥ x̄2, with equality if and only if x1 = x2 =
. . . = xn.

95. Let y = ax + b be the least-squares line corresponding to the
points (x1, y1), (x2, y2), . . . , (xn, yn). Given constants c1, c2, d1, d2,
find the least-squares line corresponding to the points (c1xk+d1, c2yk+
d2), k = 1, 2, . . . , n. Explain your result intuitively.

96. Given data points (x1, y1), (x2, y2), . . . , (xn, yn), find the equa-
tions defining the least-squares fit for each of the following families
of curves:

(a) Lines through the origin y = ax.

(b) Parabolas of the form y = ax2.

(c) Parabolas of the form y = ax2 + b.

(d) The family of curves y = a sin x + b cos x.

97. Consider the example given in class of the least-squares line
corresponding to the points (0, 0), (1, 1), (2, 4), (3, 9). Suppose the
y-coordinates of these points are perturbed in such a way that the
sum total of all changes does not exceed 1. That is, if the new y-
coordinates are y0 through y3, then |y0 − 0| + |y1 − 1| + |y2 − 4| +
|y3 − 9| ≤ 1.

(a) Find the range of possible slopes a of the corresponding least-
squares lines y = ax + b.

(b) Same for the range of possible values of b.

(c) Find the set of all possible values of the pair (a, b).

98. For each of the following families of curves use data lineariza-
tion to find a general formula for the fit corresponding to given data
points:
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(a) y = a
x+b

.

(b) y = axb.

(c) y = 1
(ax+b)2

.

(d) y = 1
ax2+b

.

(e) y = 1
1+beax .

99. For each of the following families of curves, write down the
conditions on the parameters necessary for the curve to be the least-
squares fit. Obtain explicit expressions wherever possible, or at least
try to simplify the equations you got:

(a) y = a
x+b

.

(b) y = xa + b.

(c) y = a sin x + b.

(d) y = a + bex + ce−x.

(e) y = (x + a)2.

(f) y = a sin2 x + b cos2 x.

100. The least-squares plane z = ax + by + c corresponding to
the n data points (x1, y1, z1), . . . , (xn, yn, zn) is the plane obtained
by minimizing

E2(a, b, c) =

(
1

n

n∑
k=1

(axk + byk + c− zk)
2

)1/2

.

(a) Find the equations determining the parameters of the least-
squares plane in the general case.

(b) Find the least-squares plane corresponding to the data points
(1, 4, 5), (2, 7, 9),(3, 9, 12), and (4, 12, 10).

(c) Find the least-squares plane for the data points {(k, k2, k3) :
k = 0, 1, . . . , n} .
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9 Differential Equations

101. Consider the initial value problem:

y′ = 1− y, y(0) = 2 .

(a) Show that y(t) = 1 + e−t forms a solution of the equation on
the whole real line.

(b) Show that the approximate solution obtained by Euler’s method
converges on the whole real line to the above solution as the
step size converges to 0.

102. Find an explicit expression for y(4)(t), analogous to those
found in class for the first three derivatives of y(t).

103. Consider the initial value problem:

y′ =
√

1− y2, y(0) = 0 .

Note that y(t) = sin t forms a solution of the equation on the interval[
−π

2
, π

2

]
. Estimate the error when applying Runge-Kutta’s method

(of order 4) for one step, starting at 0.
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