
Final #2

Mark all correct answers in each of the following questions.

1. The first item below deals with the performance of the bisection method
under certain conditions. The following three parts deal with fixed
points of various functions g. We start at some point x0 and continue
according to the iteration xn+1 = g(xn) for n ≥ 0. In the last two parts,
we have two functions f , and want to find zeros of these functions.
We start again from some initial point x0, and continue according to
Newton’s method.

(a) Let f : [a, b]−→R be increasing and continuously twice differen-
tiable, with f(a) < 0 and f(b) > 0. Suppose that at the zero ξ
of f in [a, b] we have also f ′(ξ) = f ′′(ξ) = 0. Then the bisection
method works faster than is usually the case with this method.
More precisely, denoting by cn the center of the interval, known
to contain ξ, which remains after n iterations of the bisection
method, we have |ξ − cn| = O(α2n

) for some α < 1.

(b) Let

g(x) =

{
x sin 1

x
, x 6= 0,

0, x = 0.

Then there exists an ε > 0 such that for every x0 ∈
(

2
π
, 2

π
+ ε

)
we

have xn −→
n→∞

2
π
.

(c) Let g be as in the preceding part. Then there exists no ε > 0 such
that, for every x0 ∈ (0, ε), we have xn −→

n→∞
0.

(d) Let

g(x) =

{
|x|3/2 sin 1

x
, x 6= 0,

0, x = 0.
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Then there exists no ε > 0 such that, for every x0 ∈ (0, ε), we
have xn −→

n→∞
0.

(e) Let f(x) = esin x−1. Then f has zeros near which Newton’s method
converges quadratically (namely, |ξ − xn+1| = O(|ξ − xn|2)), but
it also has roots at which the rate of convergence is only linear
(namely, |ξ − xn+1| = O(|ξ − xn|)), and not quadratic.

(f) Let f(x) = sin2 xesin x. Then there exists an ε > 0 such that, for
every initial point x0 ∈ (−ε, ε), we have xn −→

n→∞
0.

2. (a) The function f : [0, 2]−→R is twice differentiable, increasing

and convex. We approximate the two integrals
∫ 1

0
f(x)dx and∫ 2

1
f(x)dx by dividing each of the intervals [0, 1] and [1, 2] into n

sub-intervals of equal length, and approximating the integral on
each sub-interval using the rectangle rule. Then the error in the
approximation of

∫ 2

1
f(x)dx is larger in absolute value than the

error in the approximation of
∫ 1

0
f(x)dx.

(b) Let I3n be the approximation obtained for
∫ π

−π/2
sin xdx, when we

divide the interval [−π/2, π] into 3n sub-intervals of length π/2n
each, and approximate the integral on each sub-interval by the
midpoint rule. Then the error E =

∫ π

−π/2
sin xdx− I3n is positive.

(c) Let E be the error when approximating
∫ 11

10
x3exdx by dividing

the interval [10, 11] into n sub-intervals, not necessarily of equal
length, by means of division points 10 = x0 < x1 < . . . < xn = 11,
and estimating the integral on each sub-interval using the trape-
zoid rule. Then for every δ > 0 there exists an ε > 0 such that, if
max0≤i≤n−1(xi+1 − xi) > δ, then |E| > ε.

(d) Let E1 and E2 the errors when approximating
∫ 4

3
e3xdx and

∫ 5

4
e3xdx,

respectively, by dividing each interval into n sub-intervals of equal
length and employing Simpson’s rule on each. Then |E1| > |E2|.

(e) The integrals
∫ b

a
sin2xdx and

∫ b

a
cos2xdx are approximated by the

integrals
∫ b

a
P1(x)dx and

∫ b

a
P2(x)dx, where P1 and P2 are the

interpolation polynomials of the functions f1(x) = sin2 x and
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f2(x) = cos2 x, respectively, coinciding with these functions at
the points x0, x1, . . . , xn ∈ [a, b]. Let E1 and E2 be the resulting
errors. Then |E1| = |E2|.

3. (a) Let f : [−a, a]−→R be an odd function (namely, a function satis-
fying f(−x) = −f(x) for each x). Then for every even n ≥ 2 there
exist points x0, x1, . . . , xn ∈ [−a, a] such that the interpolation
polynomial of degree at most n, coinciding with f at x0, x1, . . . , xn,
is actually of degree at most n− 1.

(b) Let f : [−a, a]−→R be an even function (namely, a function sat-
isfying f(−x) = f(x) for each x). Then, for every n and every
points x0, x1, . . . , xn ∈ [−a, a], the interpolation polynomial of de-
gree at most n, coinciding with f at x0, x1, . . . , xn, is also an even
function.

(c) Let f : R−→R be a function for which f (n+1)(x) does not exist at

any point x. For each n we are given n+1 points x
(n)
0 , x

(n)
1 , . . . , x

(n)
n ,

satisfying x
(n)
i+1 − x

(n)
i > n for every 0 ≤ i ≤ n− 1. Let Pn be the

interpolation polynomial of degree at most n, coinciding with f
at the points x

(n)
0 , x

(n)
1 , . . . , x

(n)
n . Then, for every sequence (εn)∞n=1

of positive numbers and every sufficiently large n, there exists a
point x ∈ [x

(n)
0 , x

(n)
1 ] such that |f(x)− Pn(x)| > εn.

(d) For each n, let Pn be the interpolation polynomial of degree at
most n, coinciding with the function f(x) = ex at the n+1 points
n, n + 1, . . . , 2n. Then, for every number M , there exists some
n0 = n0(M) such that for every n > n0 there exists a point x ∈
[n, n + 1] for which |ex − Pn(x)| > M .

(e) For each n, let P2n be the interpolation polynomial of degree at
most 2n, coinciding with the function f(x) = ex at the 2n + 1
points −n,−n + 1, . . . , 0, . . . , n− 1, n. Denote

δn = max
0≤x≤1

|ex − P2n(x)| .

Then δn −→
n→∞

0. (Hint: You may use the inequalities 22n

2n+1
≤

(
2n
n

)
≤

22n for any non-negative integer n.)
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(f) Let P2 be the interpolation polynomial of degree at most 2, coincid-
ing with the function f(x) = tgx at the points π/6, π/4, π/3. Then
P2(x) 6= tgx for every x ∈ (−π/2, π/2) with x 6= π/6, π/4, π/3.

4. Consider the initial value problem:

y′ =
√

y, y(1) =
1

4
.

Note that the function y(t) = t2/4 forms a solution of the problem.

(a) Using the equation to calculate higher-order derivatives of y(t),
and expanding the function around the point t0 = 1, we obtain
the above solution of the problem.

(b) Using Euler’s method with step size h = 5/8, the approximation
we obtain for y(9/4) is 33/32.

(c) Using Euler’s method with any positive step size, the resulting
sequence (yn)∞n=1 is increasing.

Solutions

1. (a) The length of the interval we have in the bisection method after n
iterations is (b−a)/2n. As cn is the center of this interval, and cn+1

is the center of either the right half or the left half of this interval,
we have |cn+1 − cn| = b−a

4·2n . It follows that either |ξ − cn| ≥ b−a
8·2n or

|ξ − cn+1| ≥ b−a
8·2n . In particular, the errors cannot decrease faster

than exponentially. (Namely, some of them may be much smaller,
but one out of any two consecutive errors is at least a constant
divided by 2n.)

(b) For x 6= 0 we have

g′(x) = −1

x
cos

1

x
+ sin

1

x
,

and in particular g′(2/π) = 1. It follows that, if x ∈
(

2
π
, 2

π
+ ε

)
,

where ε > 0 is sufficiently small, then g(x) > 2/π. Also, since 0 <

4



sin 1
x

< 1 for such x, we have g(x) < x. Thus, if x0 ∈
(

2
π
, 2

π
+ ε

)
,

then the sequence (xn) is decreasing, and is bounded below by 2/π.
Hence it converges to a fixed point of g in the interval

[
2
π
, 2

π
+ ε

)
,

which must be the point 2/π.

(c) Every point of the form 1
(2n+1/2)π

, where n is a positive integer,
forms a fixed point of g. As the sequence formed of these points
converges to 0, this means that there are points arbitrarily close
to 0 such that, if we start the iteration from those points, we do
not get convergence to 0.

(d) Since for x ∈ (0, 1) we have

0 ≤ |x|3/2 sin
1

x
≤ x3/2 < x,

if we start with x0 ∈ (0, 1), we obtain a non-increasing sequence
in the interval [0, 1). This sequence converges to a fixed point of g
in [0, 1). Now 0 is clearly the only fixed point of g in this interval,
and therefore we do have xn −→

n→∞
0.

(e) The function f vanishes exactly at those points where the sine
function does, namely at all integer multiples of π. Since f ′(x) =
cos xesin x, when f(x) = 0 we have f ′(x) = ±1. Hence Newton’s
method converges quadratically near all zeros of f .

(f) We have:

g(x) =x− sin2 xesin x

2 sin x cos xesin x + sin2 x cos xesin x

=x− sin x

2 cos + sin x cos x

=x− 1

2 cos + sin x cos x
· sin x

x
· x ≈ 1

2
x.

It follows that, if we start from a point near 0, then we get con-
vergence, although only at a linear rate.

Thus, (b), (c) and (f) are true.
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2. (a) According to the formula for the error in the rectangle rule, for
the first integral the error is

E1 =
n∑

i=1

1

n
· f ′(ηi)

2

for some points ηi ∈ [(i−1)/n, i/n], 1 ≤ i ≤ n. Similarly, the error
in the second integral is

E2 =
n∑

i=1

1

n
· f ′(η′i)

2

for appropriate points η′i ∈ [1 + (i − 1)/n, 1 + i/n]. Since f is
convex, the function f ′ is increasing, and therefore the sum on the
right-hand side of the formula for E1 is term-by-term smaller than
the corresponding sum for E2. Since f is increasing, both sums
consist of non-negative terms, and consequently E1 < E2.

(b) Due to the fact that the integrand here is an odd function, the
errors on the sub-intervals [−π/2, 0] and [0, π/2] cancel each other,
and therefore the total error is actually the same as the error on
the interval [π/2, π]. In view of the general estimate for the error
when using the mid-point rule, the error on each sub-interval of
[π/2, π] is of the same sign as sin′′ = − sin, and therefore negative.

(c) For suitable points ηi ∈ (xi, xi+1) we have

E =− 1

12

n∑
i=1

d2(x3ex)

dx2
(ηi)(xi+1 − xi)

3

=− 1

12

n∑
i=1

(6ηi + 6η2
i + η3

i )e
ηi(xi+1 − xi)

3,

Hence, if max0≤i≤n−1(xi+1 − xi) > δ, then

|E| > 1

12
(6 · 10 + 6 · 102 + 103)e10δ3 .

It follows that ε = 100e10δ3 satisfies the requirements.
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(d) According to the formula for the error in Simpson’s rule, we have

E1 = − 1

90

n∑
i=1

34e3ηi ·
(

1

2n

)5

and

E2 = − 1

90

n∑
i=1

34e3ξi ·
(

1

2n

)5

,

where 3+(i−1)/n ≤ ηi ≤ 3+ i/n and 4+(i−1)/n ≤ ξi ≤ 4+ i/n
for 1 ≤ i ≤ n. Comparing the sums obtained for E1 and E2 term
by term, we readily see that |E1| < |E2|.

(e) The identity f2 = 1−f1 implies that P2 = 1−P1, and consequently

E2 =

∫ b

a

f2(x)dx−
∫ b

a

P2(x)dx

=

∫ b

a

(1− P2(x))dx−
∫ b

a

(1− f2(x))dx

=

∫ b

a

P1(x)dx−
∫ b

a

f1(x)dx = −E1,

which yields |E1| = |E2|.
Thus, (a), (c) and (e) are true.

3. (a) Suppose the points x0, x1, . . . , xn are taken as follows: x0 = 0,
x1, x2, . . . , xn/2 are any distinct points in (0, a] and xn/2+1 = −x1,
xn/2+2 = −x2, . . . , xn = −xn/2. It is easy to verify that the in-
terpolation polynomial of degree at most n, coinciding with f
at the points x0, x1, . . . , xn, is odd. Moreover, the same holds if
the point x0 is omitted. Hence the interpolation polynomial of
degree at most n, coinciding with f at the points x0, x1, . . . , xn,
is the same as the interpolation polynomial of degree at most
n − 1, coinciding with f only at the points x1, . . . , xn. It follows
that the interpolation polynomial of degree at most n, coincid-
ing with f at the points x0, x1, . . . , xn, is in fact of degree at
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most n − 1. (We mention in passing that the required interpo-
lation polynomial P can be effectively found by setting P (x) =
a1x + a3x

3 + a5x
5 + ... + an−1x

n−1 and solving the linear system

P (x1) = f(x1)
P (x2) = f(x2)

...
...

...
P (xn/2) = f(xn/2)

whose matrix of coefficients is basically a Vandermonde matrix.)

(b) If the points x0, x1, . . . , xn are all chosen from [0, a], then the fact
that f is even plays no role when the interpolation polynomial is
constructed, so that this polynomial may be any polynomial. (In
fact, to be specific, let P be any non-even polynomial, and define
f by:

f(x) =

{
P (x), x ≥ 0,
P (−x), x < 0.

Then f is even, but the interpolation polynomial, constructed as
above, will be the polynomial P .)

(c) Let f(x) = 1 if x is rational and f(x) = 0 otherwise. Clearly, f is
non-continuous at any point. Take εn = 1 for each n. Choosing
all points x

(n)
i to be rational, we see that each Pn is identically 1,

so that |f(x)− Pn(x)| ≤ 1 at every point x.

(d) According to the formula for the error of the interpolation poly-
nomial, for every x ∈ [n, 2n] we have

ex − Pn(x) =
(x− n)(x− n− 1) . . . (x− 2n)

(n + 1)!
(ex)(n+1)(η)

for some η = η(x) ∈ [n, 2n]. For x = n + 1/2, this yields

|en+1/2 − Pn(n + 1/2)| > 1/2 · 1/2 · 3/2 · 5/2 · . . . · (n− 1/2)

(n + 1)!
en

>
(n− 1)!

4(n + 1)!
en =

en

4n(n + 1)
.

The right-hand side grows exponentially as a function of n, and in
particular the absolute error eventually exceeds any real number.
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(e) The error at any point x ∈ [−n, n] is

ex − P2n(x) =
(x + n)(x + n− 1) . . . x . . . (x− n)

(2n + 1)!
(ex)(2n+1)(η)

for some η = η(x) ∈ [−n, n]. In particular, if x ∈ [0, 1], then:

|ex − P2n(x)| ≤ (n + 1)n(n− 1) . . . · 2 · 1 · 1 · 2 · . . . (n− 1)n

(2n + 1)!
en.

Therefore:

|ex − P2n(x)| ≤ (n + 1)!n!

(2n + 1)!
en ≤ en(

2n
n

) ≤ (2n + 1)en

4n
−→
n→∞

0.

(f) The error at any point x 6= π/6, π/4, π/3 satisfies

tgx− P2(x) =
(x− π/6)(x− π/4)(x− π/3)

3!
tg(3)(η)

for some η ∈ (−π/2, π/2). Now

tg(3)(η) =
6 sin2 η

cos4 η
+

2

cos2 η
,

which does not vanish for any η. Since the error does not vanish,
the function does not coincide with the interpolation polynomial
at any point besides the interpolation points.

Thus, (a), (d), (e) and (f) are true.

4. (a) We have

y′′ =
1

2
√

y
· y′ = 1

2
,

and therefore
y′′′ = y(4) = . . . = 0.

Hence:

y(t) = y(1) + y′(1)(t− 1) +
y′′(1)

2!
· (t− 1)2

=
1

4
+

1

2
(t− 1) +

1

4
· (t− 1)2 =

t2

4
.
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(b) Euler’s method yields

y0 = y(1) =
1

4
,

y1 = y0 +
√

y0 · h =
1

4
+

√
1

4
h =

9

16
,

y2 = y1 +
√

y1 · h =
9

16
+

3

4
· 5

8
=

33

32
.

Since y0 is the value of the function at the point t = 1 and the
step size is 5/8, the values of y1 and y2 are the approximations
for the value of the function at the points t = 13/8 and t = 9/4,
respectively.

(c) We claim that, for every non-negative integer n, we have yn+1 >
yn > 0. In fact, for n = 0 we have y1 = y0 +

√
y0 · h > y0, and by

induction we similarly see that this holds for each n.

Thus, all three claims are true.
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