
Final #1

Mark all correct answers in each of the following questions.

1. The first two items below deal with fixed points of a given function g.
We start at some point x0 and continue according to the iteration
xn+1 = g(xn) for n ≥ 0. In the last four items, we have various func-
tions f , and want to find zeros of these functions. We start again from
some initial point x0, and continue according to Newton’s method.

(a) Let g(x) = x sin x. Consider the fixed point π/2. If x0 ∈ (π/2, π/2+
δ) for sufficiently small δ > 0, then xn −→

n→∞
π/2 even though

g′(π/2) = 1. (Hint: You may use Taylor’s expansion.)

(b) Under the conditions of part (a), if x0 ∈ (0, π/2), then xn −→
n→∞

ξ,

where ξ is a fixed point of g, but ξ 6= π/2.

(c) For f(x) = ex2 − e, every x0 6= 0 will yield a sequence converging
to some zero of f .

(d) Let f(x) = sin x2. For every zero ξ of f , there exists a δ > 0
such that, if x0 ∈ (ξ − δ, ξ + δ), then xn −→

n→∞
ξ. However, the

convergence is not at the same rate for all zeros of f . Thus, for
example, if x0 is near 0 then the convergence is at a rate similar to
that provided by the bisection method, whereas if x0 is near

√
π

then the convergence is much faster.

(e) Let f(x) = cos x2. There exists a δ > 0 such that, for every zero
ξ of f and every x0 ∈ (ξ − δ, ξ + δ), we have xn −→

n→∞
ξ.

(f) If f(x) = ln(x2 + 1/2), then for every x0 6= 0 we have xn −→
n→∞

ξ for

some zero ξ of f .
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2. A is a 3× 3 invertible matrix over R. It is given that:

A

 1
0
0

 =

 1
2
2

 , A

 0
1
0

 =

 1/2
0
0

 . (1)

(a) The condition number of A with respect to the ‖ · ‖2-norm is
at least 6. However, the information we have is not enough to
conclude any upper bound on this condition number.

(b) If, out of the two equalities in (1), we were given only the first,
we would only be able to conclude that the condition number of
A with respect to the ‖ · ‖2-norm is at least 3.

(c) Suppose the condition number of A with respect to the ‖·‖∞-norm
is 10. We tried to solve the system

Ax =

 1
2
3

 ,

and got some approximation x̂. Upon calculating Ax̂, we obtained

Ax̂ =

 1.01
2.01
3.01

 .

Denote by e the error. Then:

1

3000
≤ ‖e‖∞
‖x‖∞

≤ 1

30
.

3. Suppose we have an approximation formula of the form∫ 1

0

f(x)√
x

dx = w1f(x1) + . . . + wkf(xk) + E. (2)

(a) If we have an approximation formula as above with k = 1, which
is precise (namely, E = 0) for every polynomial f of degree not
exceeding 1, then x1 = 1/3,
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(b) If we have an approximation formula as above with k = 2, which
is precise for every polynomial f of degree not exceeding 3, then
the weights wi and the points xi, 1 ≤ i ≤ 2, satisfy the equalities:

w1 + w2 = 1,
w1x1 + w2x2 = 1/3,
w1x

2
1 + w2x

2
2 = 1/5,

w1x
3
1 + w2x

3
2 = 1/7.

(c) If we have an approximation formula as above with k = 3, which
is precise for every polynomial f of degree not exceeding 5, then
the error E is non-negative for every continuous function f :
[0, 1]−→R.

(d) Suppose (2) holds precisely for all polynomials f of degree not
exceeding 2k− 1. Define an inner product 〈·, ·〉 on the space of all
polynomials over R by:

〈Q1, Q2〉 =

∫ 1

0

Q1(x)Q2(x)√
x

dx.

Put P (x) = (x − x1) · . . . · (x − xk). Then 〈P, Q〉 = 0 for every
polynomial Q of degree not exceeding 2k − 1.

(e) If we have an approximation formula as above with k = 2, which
is precise for every polynomial f of degree not exceeding 3, then
the points xi are rational.

4. Let [a, b] be an interval on the real line, x0, x1, . . . , xn distinct points in
[a, b], and f, f1, f2 functions from [a, b] to R.

(a) Let P be the interpolation polynomial of degree at most n, coin-
ciding with f at x0, x1, . . . , xn. There exists a constant ε > 0 such
that, if |f(x)−P (x)| < ε for every x ∈ [a, b], then f is n+1 times
differentiable in [a, b]. Moreover, f (n+1) is bounded in the interval.

(b) Let P1, P2 be the interpolation polynomials of degrees at most
n, coinciding with f1, f2, respectively, at the points x0, x1, . . . , xn.
If P1 = P2, then there exist infinitely many points x in [a, b] for
which f1(x) = f2(x).
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(c) Let P1, P2 be the interpolation polynomials of degrees at most
n, coinciding with f1, f2, respectively, at the points x0, x1, . . . , xn.
Then the interpolation polynomial of degree at most n, coinciding
with the function f1 + f2 at the points x0, x1, . . . , xn, is P1 + P2.

(d) Let P1, P2 be the interpolation polynomials of degrees at most
n, coinciding with f1, f2, respectively, at the points x0, x1, . . . , xn.
Then there exist points xn+1, . . . , x2n such that P1P2 is the inter-
polation polynomial of degree at most 2n, coinciding with f1f2 at
the points x0, x1, . . . , x2n.

(e) Let P be the interpolation polynomial of degree at most n, co-
inciding with f at x0, x1, . . . , xn. Let g : [a/2, b/2]−→R be the
function defined by

g(x) = f(2x), x ∈ [a/2, b/2].

Then there exist points x′0, x
′
1, . . . , x

′
n in the interval [a/2, b/2] such

that P (2x) is the interpolation polynomial of degree at most n,
coinciding with g at x′0, x

′
1, . . . , x

′
n.

(f) Let P be the interpolation polynomial of degree at most n, coin-
ciding with f at x0, x1, . . . , xn. If f is continuously differentiable
throughout [a, b], then there exist points x′0, x

′
1, . . . , x

′
n−1 in the in-

terval [a, b] such that P ′ is the interpolation polynomial of degree
at most n− 1, coinciding with f ′ at x′0, x

′
1, . . . , x

′
n−1.

Solutions

1. (a) As
g′(x) = x cos x + sin x, g′(π/2) = 1,

and
g′′(x) = −x sin x + 2 cos x,

we have

g(x) = π/2 + 1 · (x− π/2) +
−η sin η + 2 cos η

2!
(x− π/2)2 ,

4



where η ∈ (π/2, x). Thus, if x ∈ (π/2, π/2+δ), then g(x) < x and,
moreover, if δ > 0 is sufficiently small, then g(x) > π/2. Hence
the conditions imply that the sequence (xn) is strictly decreasing
and xn > π/2 for each n. It follows that xn −→

n→∞
ξ for some point

ξ ∈ [π/2, π/2 + δ). The point ξ must be a fixed point of g, and
therefore ξ = π/2.

(b) For any x ∈ (0, π/2) we have 0 < g(x) < x. Hence the sequence
(xn) is strictly decreasing, and therefore converges to a point in
ξ ∈ [0, π/2). Now ξ is a fixed point of g. Obviously, the only fixed
point of g in [0, π/2) is 0, and hence ξ = 0.

(c) As f is an even function, it suffices, by symmetry, to deal with
the case x0 > 0. The only zero of f in the positive half-line is
ξ = 1. Take an interval [a, b] containing both x0 and 1. Since f is
increasing and convex in (0,∞), replacing b by a sufficiently large
number if necessary, we obtain an interval on which the sufficient
condition for Newton’s method to converge holds.

(d) Since f ′(x) = 2x cos x2, no zero of f is also a zero of f ′, except
for 0. Thus, if we start from a point near a zero ξ 6= 0 of f , the
convergence to ξ is quadratic. Now:

g(x) = x− f(x)

f ′(x)
= x− sin x2

2x cos x2
= x− 1

2 cos x2
· sin x2

x2
x.

Since sin x2

x2 −→
x→0

0, for points x near 0 we have g(x) ≈ x/2, so that

Newton’s method converges only linearly in the case ξ = 0.

(e) The zeros of f are all numbers of the form
√

(2n + 1)π/2 for non-
negative integers n. None of these zeros is a zero of f ′, so that
Newton’s method converges quadratically when we start it from a
sufficiently small neighborhood of each. However, as the distances
between consecutive zeros of f go to 0 as n grows, these small
neighborhoods cannot possibly be independent of n.

(f) The zeros of f are ±
√

2/2. Now:

g(x) = x− f(x)

f ′(x)
= x− ln(x2 + 1/2)

(1/(x2 + 1/2)) · 2x

= x− ln(x2 + 1/2)

2

x2 + 1/2

x2
x.
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One easily sees that, for large x, this implies that |g(x)| > |x|.
Hence Newton’s method does not converge if |x0| is large enough.

Thus, (a), (b), (c) and (d) are true.

2. (a) Out of the two vectors whose images under the action of A are
known, one goes to a vector whose ‖ · ‖2-norm is three times as
large as that of the given vector and the other goes to a vector
whose ‖ · ‖2-norm is half that of the given vector. Hence ‖A‖2 ≥ 3
and ‖A−1‖2 ≥ 2. Thus, the condition number of A with respect
to the ‖ · ‖2-norm is at least 6.

(b) In this case it is impossible to conclude anything non-trivial. For
example, it is possible that each vector is taken by A to a vector
whose ‖·‖2-norm is three times as large as that of the given vector.
(This is the case, for example, if the transformation defined by
A first multiplies each vector by 3, and then applies a suitable
rotation to the resulting vector. In this case, the condition number
of A is 1.

(c) According to one of the formulas developed in class:

1

‖A‖ · ‖A−1‖
· ‖r‖
‖b‖

≤ ‖e‖
‖x‖

‖A‖ · ‖A−1‖ · ‖r‖
‖b‖

.

Plugging in the values cond(A) = 10, ‖b‖ = 3, ‖r‖ = 0.01, we
obtain the required inequalities.

Thus, (a) and (c) are true.

3. (a) We have:∫ 1

0

xl

√
x
dx =

[
xl+1/2

l + 1/2

]1

x=0

=
2

2l + 1
, l = 0, 1, 2 . . . .

Hence, if the given approximation formula is precise for every
polynomial f of degree not exceeding 2k − 1 for some k, then:

w1 + w2 + . . . + wk = 2,
w1x1 + w2x2 + . . . + wkxk = 2/3,

...
...

...
...

w1x
2k−1
1 + w2x

2k−1
2 + . . . + wkx

2k−1
k = 2/(4k − 1).
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In the special case k = 1, we get the system

w1 = 2,
w1x1 = 2/3,

Whose solution is w1 = 2, x1 = 1/3.

(b) The special case k = 2 of the system of equations, developed in
the preceding part, is:

w1 + w2 = 2,
w1x1 + w2x2 = 2/3,
w1x

2
1 + w2x

2
2 = 2/5,

w1x
3
1 + w2x

3
2 = 2/7.

(c) Let f(x) = −(x−x1)
2(x−x2)

2(x−x3)
2 . As the integrand is non-

positive throughout the interval, and is 0 only at finitely many
points,

∫ 1

0
f(x)√

x
dx < 0. Since f vanishes at the points x1, x2, x3,

the approximation formula gives 0 as the approximation. Hence
the error is negative.

(d) Similarly to the classical case, discussed in class, we must have
〈P, Q〉 = 0 for every polynomial Q of degree not exceeding k − 1.
However, this is generally not the case for polynomials Q of higher
degrees. For example, we clearly have 〈P, P 〉 > 0.

(e) Let P (x) = (x−x1)(x−x2) = x2 +a1x+a2. Since P is orthogonal
to each polynomial of degree up to 1, we have:

〈P, 1〉 = 0 =⇒ 2
5

+ 2
3
a1 + 2a2 = 0.

〈P, x〉 = 0 =⇒ 2
7

+ 2
5
a1 + 2

3
a2 = 0.

Solving the system, we obtain a1 = −6/7, a2 = 3/35. The points
x1, x2 are the zeros of the quadratic x2 − 6

7
x + 3

35
, namely (4 ±√

13)/35.

Thus, only (a) is true.
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4. (a) The fact that |f(x)− P (x)| < ε throughout the interval does not
imply any differentiability properties of f . For example, let

f(x) =

{
ε/2, x rational,
0, x irrational,

If all points x0, x1, . . . , xn are irrational, then P is the 0 polyno-
mial, and |f(x)−P (x)| < ε for all x. However, f is not continuous
at any point.

(b) Let f1(x) = 0 and f2(x) = (x − x0)(x − x1) . . . (x − xn) for all x.
Then both P1, P2 are identically 0, but f1 and f2 coincide only at
the points x0, x1, . . . , xn.

(c) The polynomial P1 +P2 clearly coincides with f1 +f2 at the points
x0, x1, . . . , xn, and it is of degree at most n. Hence it is the required
interpolation polynomial.

(d) Let f1(x) = f2(x) = (x − x0)(x − x1) . . . (x − xn). Then P1 = P2

is the 0 polynomial. Now, f1f2 does not vanish at any point be-
sides the points xi, and therefore P1P2 cannot be an interpolation
polynomial coinciding with f1f2 at 2n + 1 points.

(e) Taking x′i = xi/2 for 0 ≤ i ≤ n, we obtain:

g(x′i) = f(2x′i) = f(xi) = P (xi) = P (2x′i), 0 ≤ i ≤ n.

The polynomial P (2x) thus coincides with g(x) at the points
x′0, x

′
1, . . . , x

′
n, and it is of degree at most n. Hence it is the re-

quired interpolation polynomial.

(f) The function f(x)−P (x) vanishes at all points x0, x1, . . . , xn. Be-
tween any two zeros of this function, the derivative f ′(x)− P ′(x)
must vanish at least once. Hence there exist points x′0, x

′
1, . . . , x

′
n−1

in [a, b] such that f ′(x′i) − P ′(x′i) = 0 for 0 ≤ i ≤ n − 1. Since
P ′ is of degree at most n − 1, it is the interpolation polynomial
coinciding with f ′ at x′0, x

′
1, . . . , x

′
n−1.

Thus, (c), (e) and (f) are true.
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