Final #1

Mark all correct answers in each of the following questions.

- 1. The first two items below deal with fixed points of a given function g. We start at some point x_0 and continue according to the iteration $x_{n+1} = g(x_n)$ for $n \ge 0$. In the last four items, we have various functions f, and want to find zeros of these functions. We start again from some initial point x_0 , and continue according to Newton's method.
 - (a) Let $g(x) = x \sin x$. Consider the fixed point $\pi/2$. If $x_0 \in (\pi/2, \pi/2 + \delta)$ for sufficiently small $\delta > 0$, then $x_n \xrightarrow[n \to \infty]{} \pi/2$ even though $g'(\pi/2) = 1$. (Hint: You may use Taylor's expansion.)
 - (b) Under the conditions of part (a), if $x_0 \in (0, \pi/2)$, then $x_n \xrightarrow[n \to \infty]{} \xi$, where ξ is a fixed point of g, but $\xi \neq \pi/2$.
 - (c) For $f(x) = e^{x^2} e$, every $x_0 \neq 0$ will yield a sequence converging to some zero of f.
 - (d) Let $f(x) = \sin x^2$. For every zero ξ of f, there exists a $\delta > 0$ such that, if $x_0 \in (\xi \delta, \xi + \delta)$, then $x_n \xrightarrow[n \to \infty]{} \xi$. However, the convergence is not at the same rate for all zeros of f. Thus, for example, if x_0 is near 0 then the convergence is at a rate similar to that provided by the bisection method, whereas if x_0 is near $\sqrt{\pi}$ then the convergence is much faster.
 - (e) Let $f(x) = \cos x^2$. There exists a $\delta > 0$ such that, for every zero ξ of f and every $x_0 \in (\xi \delta, \xi + \delta)$, we have $x_n \xrightarrow[n \to \infty]{} \xi$.
 - (f) If $f(x) = \ln(x^2 + 1/2)$, then for every $x_0 \neq 0$ we have $x_n \xrightarrow[n \to \infty]{} \xi$ for some zero ξ of f.

2. A is a 3×3 invertible matrix over **R**. It is given that:

$$A\begin{pmatrix} 1\\0\\0\end{pmatrix} = \begin{pmatrix} 1\\2\\2\end{pmatrix}, \qquad A\begin{pmatrix} 0\\1\\0\end{pmatrix} = \begin{pmatrix} 1/2\\0\\0\end{pmatrix}. \tag{1}$$

- (a) The condition number of A with respect to the $\|\cdot\|_2$ -norm is at least 6. However, the information we have is not enough to conclude any upper bound on this condition number.
- (b) If, out of the two equalities in (1), we were given only the first, we would only be able to conclude that the condition number of A with respect to the $\|\cdot\|_2$ -norm is at least 3.
- (c) Suppose the condition number of A with respect to the $\|\cdot\|_{\infty}$ -norm is 10. We tried to solve the system

$$A\mathbf{x} = \begin{pmatrix} 1\\2\\3 \end{pmatrix} \,,$$

and got some approximation $\hat{\mathbf{x}}$. Upon calculating $A\hat{\mathbf{x}}$, we obtained

$$A\hat{\mathbf{x}} = \left(\begin{array}{c} 1.01\\ 2.01\\ 3.01 \end{array}\right) .$$

Denote by **e** the error. Then:

$$\frac{1}{3000} \le \frac{\|\mathbf{e}\|_{\infty}}{\|\mathbf{x}\|_{\infty}} \le \frac{1}{30}.$$

3. Suppose we have an approximation formula of the form

$$\int_0^1 \frac{f(x)}{\sqrt{x}} dx = w_1 f(x_1) + \dots + w_k f(x_k) + E.$$
 (2)

(a) If we have an approximation formula as above with k = 1, which is precise (namely, E = 0) for every polynomial f of degree not exceeding 1, then $x_1 = 1/3$,

(b) If we have an approximation formula as above with k = 2, which is precise for every polynomial f of degree not exceeding 3, then the weights w_i and the points x_i , $1 \le i \le 2$, satisfy the equalities:

$$w_1 + w_2 = 1,$$

$$w_1x_1 + w_2x_2 = 1/3,$$

$$w_1x_1^2 + w_2x_2^2 = 1/5,$$

$$w_1x_1^3 + w_2x_2^3 = 1/7.$$

- (c) If we have an approximation formula as above with k=3, which is precise for every polynomial f of degree not exceeding 5, then the error E is non-negative for every continuous function f: $[0,1] \longrightarrow \mathbf{R}$.
- (d) Suppose (2) holds precisely for all polynomials f of degree not exceeding 2k-1. Define an inner product $\langle \cdot, \cdot \rangle$ on the space of all polynomials over \mathbf{R} by:

$$\langle Q_1, Q_2 \rangle = \int_0^1 \frac{Q_1(x)Q_2(x)}{\sqrt{x}} dx.$$

Put $P(x) = (x - x_1) \cdot \ldots \cdot (x - x_k)$. Then $\langle P, Q \rangle = 0$ for every polynomial Q of degree not exceeding 2k - 1.

- (e) If we have an approximation formula as above with k = 2, which is precise for every polynomial f of degree not exceeding 3, then the points x_i are rational.
- 4. Let [a, b] be an interval on the real line, x_0, x_1, \ldots, x_n distinct points in [a, b], and f, f_1, f_2 functions from [a, b] to \mathbf{R} .
 - (a) Let P be the interpolation polynomial of degree at most n, coinciding with f at x_0, x_1, \ldots, x_n . There exists a constant $\varepsilon > 0$ such that, if $|f(x) P(x)| < \varepsilon$ for every $x \in [a, b]$, then f is n + 1 times differentiable in [a, b]. Moreover, $f^{(n+1)}$ is bounded in the interval.
 - (b) Let P_1, P_2 be the interpolation polynomials of degrees at most n, coinciding with f_1, f_2 , respectively, at the points x_0, x_1, \ldots, x_n . If $P_1 = P_2$, then there exist infinitely many points x in [a, b] for which $f_1(x) = f_2(x)$.

- (c) Let P_1, P_2 be the interpolation polynomials of degrees at most n, coinciding with f_1, f_2 , respectively, at the points x_0, x_1, \ldots, x_n . Then the interpolation polynomial of degree at most n, coinciding with the function $f_1 + f_2$ at the points x_0, x_1, \ldots, x_n , is $P_1 + P_2$.
- (d) Let P_1, P_2 be the interpolation polynomials of degrees at most n, coinciding with f_1, f_2 , respectively, at the points x_0, x_1, \ldots, x_n . Then there exist points x_{n+1}, \ldots, x_{2n} such that P_1P_2 is the interpolation polynomial of degree at most 2n, coinciding with f_1f_2 at the points x_0, x_1, \ldots, x_{2n} .
- (e) Let P be the interpolation polynomial of degree at most n, coinciding with f at x_0, x_1, \ldots, x_n . Let $g : [a/2, b/2] \longrightarrow \mathbf{R}$ be the function defined by

$$g(x) = f(2x), \qquad x \in [a/2, b/2].$$

Then there exist points x'_0, x'_1, \ldots, x'_n in the interval [a/2, b/2] such that P(2x) is the interpolation polynomial of degree at most n, coinciding with g at x'_0, x'_1, \ldots, x'_n .

(f) Let P be the interpolation polynomial of degree at most n, coinciding with f at x_0, x_1, \ldots, x_n . If f is continuously differentiable throughout [a, b], then there exist points $x'_0, x'_1, \ldots, x'_{n-1}$ in the interval [a, b] such that P' is the interpolation polynomial of degree at most n-1, coinciding with f' at $x'_0, x'_1, \ldots, x'_{n-1}$.

Solutions

1. (a) As

$$g'(x) = x \cos x + \sin x, \qquad g'(\pi/2) = 1,$$

and

$$g''(x) = -x\sin x + 2\cos x,$$

we have

$$g(x) = \pi/2 + 1 \cdot (x - \pi/2) + \frac{-\eta \sin \eta + 2 \cos \eta}{2!} (x - \pi/2)^2$$

where $\eta \in (\pi/2, x)$. Thus, if $x \in (\pi/2, \pi/2 + \delta)$, then g(x) < x and, moreover, if $\delta > 0$ is sufficiently small, then $g(x) > \pi/2$. Hence the conditions imply that the sequence (x_n) is strictly decreasing and $x_n > \pi/2$ for each n. It follows that $x_n \xrightarrow[n \to \infty]{} \xi$ for some point $\xi \in [\pi/2, \pi/2 + \delta)$. The point ξ must be a fixed point of g, and therefore $\xi = \pi/2$.

- (b) For any $x \in (0, \pi/2)$ we have 0 < g(x) < x. Hence the sequence (x_n) is strictly decreasing, and therefore converges to a point in $\xi \in [0, \pi/2)$. Now ξ is a fixed point of g. Obviously, the only fixed point of g in $[0, \pi/2)$ is 0, and hence $\xi = 0$.
- (c) As f is an even function, it suffices, by symmetry, to deal with the case $x_0 > 0$. The only zero of f in the positive half-line is $\xi = 1$. Take an interval [a, b] containing both x_0 and 1. Since f is increasing and convex in $(0, \infty)$, replacing b by a sufficiently large number if necessary, we obtain an interval on which the sufficient condition for Newton's method to converge holds.
- (d) Since $f'(x) = 2x \cos x^2$, no zero of f is also a zero of f', except for 0. Thus, if we start from a point near a zero $\xi \neq 0$ of f, the convergence to ξ is quadratic. Now:

$$g(x) = x - \frac{f(x)}{f'(x)} = x - \frac{\sin x^2}{2x \cos x^2} = x - \frac{1}{2 \cos x^2} \cdot \frac{\sin x^2}{x^2} x.$$

Since $\frac{\sin x^2}{x^2} \longrightarrow 0$, for points x near 0 we have $g(x) \approx x/2$, so that Newton's method converges only linearly in the case $\xi = 0$.

- (e) The zeros of f are all numbers of the form $\sqrt{(2n+1)\pi/2}$ for nonnegative integers n. None of these zeros is a zero of f', so that Newton's method converges quadratically when we start it from a sufficiently small neighborhood of each. However, as the distances between consecutive zeros of f go to 0 as n grows, these small neighborhoods cannot possibly be independent of n.
- (f) The zeros of f are $\pm \sqrt{2}/2$. Now:

$$g(x) = x - \frac{f(x)}{f'(x)} = x - \frac{\ln(x^2 + 1/2)}{(1/(x^2 + 1/2)) \cdot 2x}$$
$$= x - \frac{\ln(x^2 + 1/2)}{2} \frac{x^2 + 1/2}{x^2} x.$$

One easily sees that, for large x, this implies that |g(x)| > |x|. Hence Newton's method does not converge if $|x_0|$ is large enough. Thus, (a), (b), (c) and (d) are true.

- 2. (a) Out of the two vectors whose images under the action of A are known, one goes to a vector whose || · ||₂-norm is three times as large as that of the given vector and the other goes to a vector whose || · ||₂-norm is half that of the given vector. Hence || A ||₂ ≥ 3 and || A⁻¹ ||₂ ≥ 2. Thus, the condition number of A with respect to the || · ||₂-norm is at least 6.
 - (b) In this case it is impossible to conclude anything non-trivial. For example, it is possible that each vector is taken by A to a vector whose $\|\cdot\|_2$ -norm is three times as large as that of the given vector. (This is the case, for example, if the transformation defined by A first multiplies each vector by 3, and then applies a suitable rotation to the resulting vector. In this case, the condition number of A is 1.
 - (c) According to one of the formulas developed in class:

$$\frac{1}{\|A\| \cdot \|A^{-1}\|} \cdot \frac{\|\mathbf{r}\|}{\|\mathbf{b}\|} \le \frac{\|e\|}{\|x\|} \|A\| \cdot \|A^{-1}\| \cdot \frac{\|\mathbf{r}\|}{\|\mathbf{b}\|}.$$

Plugging in the values $cond(A) = 10, ||\mathbf{b}|| = 3, ||\mathbf{r}|| = 0.01$, we obtain the required inequalities.

Thus, (a) and (c) are true.

3. (a) We have:

$$\int_0^1 \frac{x^l}{\sqrt{x}} dx = \left[\frac{x^{l+1/2}}{l+1/2} \right]_{x=0}^1 = \frac{2}{2l+1}, \qquad l = 0, 1, 2 \dots$$

Hence, if the given approximation formula is precise for every polynomial f of degree not exceeding 2k-1 for some k, then:

In the special case k = 1, we get the system

$$w_1 = 2,$$

 $w_1 x_1 = 2/3,$

Whose solution is $w_1 = 2, x_1 = 1/3$.

(b) The special case k=2 of the system of equations, developed in the preceding part, is:

$$\begin{array}{rcl} w_1 & + & w_2 & = & 2, \\ w_1x_1 & + & w_2x_2 & = & 2/3, \\ w_1x_1^2 & + & w_2x_2^2 & = & 2/5, \\ w_1x_1^3 & + & w_2x_2^3 & = & 2/7. \end{array}$$

- (c) Let $f(x) = -(x-x_1)^2(x-x_2)^2(x-x_3)^2$. As the integrand is non-positive throughout the interval, and is 0 only at finitely many points, $\int_0^1 \frac{f(x)}{\sqrt{x}} dx < 0$. Since f vanishes at the points x_1, x_2, x_3 , the approximation formula gives 0 as the approximation. Hence the error is negative.
- (d) Similarly to the classical case, discussed in class, we must have $\langle P,Q\rangle=0$ for every polynomial Q of degree not exceeding k-1. However, this is generally not the case for polynomials Q of higher degrees. For example, we clearly have $\langle P,P\rangle>0$.
- (e) Let $P(x) = (x x_1)(x x_2) = x^2 + a_1x + a_2$. Since P is orthogonal to each polynomial of degree up to 1, we have:

$$\langle P, 1 \rangle = 0 \implies \frac{2}{5} + \frac{2}{3}a_1 + 2a_2 = 0.$$

$$\langle P, x \rangle = 0 \implies \frac{2}{7} + \frac{2}{5}a_1 + \frac{2}{3}a_2 = 0.$$

Solving the system, we obtain $a_1 = -6/7$, $a_2 = 3/35$. The points x_1, x_2 are the zeros of the quadratic $x^2 - \frac{6}{7}x + \frac{3}{35}$, namely $(4 \pm \sqrt{13})/35$.

Thus, only (a) is true.

4. (a) The fact that $|f(x) - P(x)| < \varepsilon$ throughout the interval does not imply any differentiability properties of f. For example, let

$$f(x) = \begin{cases} \varepsilon/2, & x \text{ rational,} \\ 0, & x \text{ irrational,} \end{cases}$$

If all points x_0, x_1, \ldots, x_n are irrational, then P is the 0 polynomial, and $|f(x) - P(x)| < \varepsilon$ for all x. However, f is not continuous at any point.

- (b) Let $f_1(x) = 0$ and $f_2(x) = (x x_0)(x x_1) \dots (x x_n)$ for all x. Then both P_1, P_2 are identically 0, but f_1 and f_2 coincide only at the points x_0, x_1, \dots, x_n .
- (c) The polynomial $P_1 + P_2$ clearly coincides with $f_1 + f_2$ at the points x_0, x_1, \ldots, x_n , and it is of degree at most n. Hence it is the required interpolation polynomial.
- (d) Let $f_1(x) = f_2(x) = (x x_0)(x x_1) \dots (x x_n)$. Then $P_1 = P_2$ is the 0 polynomial. Now, $f_1 f_2$ does not vanish at any point besides the points x_i , and therefore $P_1 P_2$ cannot be an interpolation polynomial coinciding with $f_1 f_2$ at 2n + 1 points.
- (e) Taking $x_i' = x_i/2$ for $0 \le i \le n$, we obtain:

$$g(x_i') = f(2x_i') = f(x_i) = P(x_i) = P(2x_i'), \qquad 0 \le i \le n.$$

The polynomial P(2x) thus coincides with g(x) at the points x'_0, x'_1, \ldots, x'_n , and it is of degree at most n. Hence it is the required interpolation polynomial.

(f) The function f(x) - P(x) vanishes at all points x_0, x_1, \ldots, x_n . Between any two zeros of this function, the derivative f'(x) - P'(x) must vanish at least once. Hence there exist points $x'_0, x'_1, \ldots, x'_{n-1}$ in [a, b] such that $f'(x'_i) - P'(x'_i) = 0$ for $0 \le i \le n - 1$. Since P' is of degree at most n - 1, it is the interpolation polynomial coinciding with f' at $x'_0, x'_1, \ldots, x'_{n-1}$.

Thus, (c), (e) and (f) are true.