
Number Theory

Exercises

1 The Euclidean Algorithm

1. Prove that, if a is an odd integer, then 32|(a2 − 5)(a2 + 15).

2. Prove that, for every solution of the diophantine equation a2 +
b2 = c2, either a or b must be even.

3. Prove that for every integer a there exist integers b and c such
that b(4a + 3) + c(11a + 8) = 1.

4. Prove, without using combinatorial considerations, that, for any
integers a and k with 2 ≤ k ≤ 6, the number

a(a + 1) . . . (a + k − 1)

k!

is an integer.

5. Prove that, if a|b and c|d, then gcd(a, c)| gcd(b, d).

6. Prove that, if a is relatively prime to both b and c, then a is
relatively prime to bc.

7. Employ the Euclidean algorithm to calculate the greatest com-
mon divisor of 38076 and 5256.

8.

(a) Explain how, given integers a, b with gcd(a, b) = d, we can
apply the Euclidean algorithm to find integers s, t such that
sa + tb = d.
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(b) Find integers s, t such that s · 1001 + t · 1643 = 1.

9. Let a and b be relatively prime positive integers.

(a) Prove that there exists an integer N = N(a, b), such that every
integer n ≥ N can be expressed in the form n = sa + tb for
appropriate integers s, t ≥ 0.

(b) Find an upper bound on N in terms of a and b only.

10. Prove that, if a, b, c are integers, at least two of which are non-
zero, then gcd(a, b, c) = gcd(gcd(a, b), c).

2 The Fundamental Theorem of Arithmetic

11. Let n be a positive integer with known prime power factoriza-
tion n = pe1

1 pe2
2 . . . per

r .

(a) Find the number of divisors of n.

(b) Find the sum of these divisors.

12. Let a, b be integers such that gcd(a, b) = pe1
1 pe2

2 . . . per
r .

(a) What are the possible values of gcd(a2, b2)?

(b) Same for gcd(a2, b) and gcd(a2, b3).

13. Write down the prime power factorization of n! as explicitly as
possible.

14. Let n ≥ 2.

(a) Show that, unless n is a power of 2, the number 22n
+ 1 is

composite.

(b) Show that, unless n is a prime, the number 2n−1 is composite.

15. A number is an almost prime if it is either a prime or a product
of two primes. Suggest an algorithm with running time O(nθ), where
θ < 1/2, for deciding whether an integer n is an almost prime.

16. Which positive integers n have the property that n, n+2, n+4
are all prime?
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17.

(a) Prove that there exist infinitely many primes of the form 6n+5.

(b) Explain why your proof does not work to show that there exist
infinitely many primes of the form 6n + 1.

18. Prove that, if p1, p2, . . . , pn are distinct primes, then the sum
1/p1 + 1/p2 + . . . + 1/pn cannot be an integer.

3 Congruences

19. Calculate:

(a) 8888 mod 15.

(b) 2131024 mod 7.

20. For any b ≥ 2, find two integers d1, d2, relatively prime to b,
such that it is easy to test the divisibility of a number n by d1 and
d2 in terms of the base b expansion of n. Formulate and prove the
divisibility criteria.

21. Let b ≥ 2. Characterize the integers d possessing the following
property: There exists a constant C = C(b, d) such that the divis-
ibility of an integer n by d can be decided if we know only the C
least significant digits in the base b expansion of n.

22.

(a) Show that, given the last digit in the base 10 expansion of n3,
you can determine the last digit in the expansion of n.

(b) Conclude that, by memorizing the cubes of the integers in the
range 0-9, you can easily find n if n3 is given and is a number
with at most 6 digits.

23. Find all solutions of the following congruences:

(a) x3 − 6x2 + 2x + 3 ≡ 0 (mod 7).

(b) 2x4 + 3x3 + x + 2 ≡ 0 (mod 5).

(c) x5 − 1 ≡ 0 (mod 9).

24. Solve the following congruences:
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(a) 49x ≡ 287 (mod 1001).

(b) 63x ≡ 999 (mod 2142).

(c) 15x ≡ 40 (mod 196).

25. Let p1, p2, . . . , pk be distinct primes. Prove that there exist
infinitely many integers n which are congruent to 1 modulo p1, to 2
modulo p2

2, to 3 modulo p3
3, and so forth.

26.

(a) Prove that the system of congruences x ≡ a (mod m)
x ≡ b (mod n) has a solution if and only if gcd(m, n)|b−a. Show
that the solution, if it exists, is unique modulo lcm(m,n).

(b) Conclude that, given a system of congruences as in the Chinese
Remainder Theorem, but without the provision that the moduli
are pairwise prime, you can effectively solve it.

27. Find all solutions of the following systems of congruences:

(a) x ≡ 1 (mod 3)
x ≡ 2 (mod 4)
x ≡ 4 (mod 5)
x ≡ 17 (mod 49).

(b) x ≡ 0 (mod 12)
x ≡ 2 (mod 31)
x ≡ 3 (mod 35)
x ≡ 100 (mod 121).

(c) x ≡ 6 (mod 10)
x ≡ 60 (mod 63)
x ≡ 600 (mod 1331).

28.

(a) Let a be a positive integer, c a divisor of a and X ∼ U[0, a −
1]. Let Y be the least non-negative residue of X modulo c.
Determine the distribution of Y .

(b) Let a, b be relatively prime positive integers, X ∼ U[0, a−1] and
Y ∼ U[0, b− 1]. Let Z be the least non-negative integer which
is congruent to X modulo a and to Y modulo b. Determine the
distribution of Z.

29. A certain top secret is held in the form a very large integer
N . The secret is known to the Airforce commander only. The
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commander wants that, in case he is incapacitated, any three of his
r assistants will be able to recover N , but no two of them will be
able to do so by themselves.

(a) Let p1, p2, . . . , pr be distinct primes, all of which are much

smaller than
√

N but much larger than 3
√

N . Suggest a way
of using the pi’s to give the assistants partial information as
required.

(b) More generally, suggest a way of solving the problem if any k of
the assistants should be able to recover N , but no k−1 should.

4 Fermat’s Little Theorem

30. Prove in a combinatorial way that, if p is a prime and 1 ≤ k ≤
p− 1, then p|

(
p
k

)
.

31. Prove that log2 n! is irrational for n ≥ 3. (Consequently, the
average number of comparisons required for sorting an n-element
list, by any algorithm based on the comparison of keys, is strictly
larger than log2 n!.)

32. Employ Fermat’s Theorem to show that:

(a) If gcd(a, 1001) = 1, then a60 ≡ 1 (mod 1001).

(b) If gcd(a, 78) = gcd(b, 78) = 1, then 1872|a12 − b12.

33. Let p be a prime, and a, b integers not divisible by p, such that
p|ap − bp. Show that p|a− b, and use it to show that p2|ap − bp.

34. Show that, if p is an odd prime, then
(

p−1
(p−1)/2

)
≡ (−1)(p−1)/2 (mod p).

35.

(a) Show that, if k|l, then ak − 1|al − 1 for every integer a.

(b) Use part (a) to show that, if p is a prime, then 2p − 1 is either
a prime or a pseudoprime in base 2.

(c) Use part (a) to show that, for any positive integer n, the number
22n

+ 1 is either a prime or a pseudoprime in base 2.

36.
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(a) Find all bases b such that 15 is a pseudoprime in base b.

(b) Find all bases b such that 21 is a pseudoprime in base b.

37. Show that 6601 = 7 · 23 · 41 is a Carmichael number.

38. Prove that the set {k! mod p : 1 ≤ k ≤ p− 1} is of cardinality

d
√

2(p− 2)e at least.

39. Show that 18! ≡ −1 (mod 437).

40. Prove that a number n > 1 is prime if and only if (n − 2)! ≡
−1 (mod n).

41. Let n = p1p2 . . . pr be a product of distinct primes. How many
solutions does the congruence x2 ≡ −1 (mod n) have? (Hint: your
answer should depend on whether all pi’s are 1 modulo 4 or not all
of them are.)

42. Prove that, if p, p + 2 are twin primes, then 4(p− 1)! + p + 4 ≡
0 (mod p(p + 2)).

5 Euler’s Totient Function and Euler’s Theorem

43. Let a, b be divisors of n and X ∼ U[0, n − 1]. Under what
conditions are the events {gcd(X, a) = 1} and {gcd(X, b) = 1}
independent?

44. Let n ≥ 2. Let the random variable X be the result of choosing
one of the φ(n) numbers between 1 and n − 1 which are relatively
prime to n, with the same probability 1/φ(n) for each. Find E(X).

45. Prove the explicit formula for φ(n) directly from the inclusion-
exclusion principle.

46. A lattice point in the plane is a point (m,n) with integer coor-
dinates. A lattice point is visible from the origin if the line segment
connecting it to the origin contains no lattice points strictly between
the point and the origin. Prove that the number of lattice points vis-
ible from the origin in the square [1, N ]× [1, N ] is 1+2

∑n
k=2 φ(k).

47. Show that φ(n) = (1−1/p)n for a prime p and integer n if and
only if n is a non-trivial power of p.
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48. Show that the diophantine equation φ(n) = mk has infinitely
many solutions (m, n) for any fixed k.

49. Prove that, if δ > 0 is any fixed real number, then φ(n) > n1−δ

for all sufficiently large n.

50. Characterize the pairs (m, n) for which φ(mn) = mφ(n).

51. Prove that, if φ(n)|n− 1, then n is square-free.

52. Find all solutions (if any) of the equations:

(a) φ(n) = 10.

(b) φ(n) = 14.

(c) φ(n) = 100.

53. Show that:

(a) a13 ≡ a (mod 2 · 3 · 5 · 7 · 13) for every integer a.

(b) a17 ≡ a (mod 26 · 3 · 5 · 17) for every odd integer a.

54. Show that, if m,n are relatively prime, then mφ(n) + nφ(m) ≡
1 (mod mn).

55. Calculate:

(a) The last two digits in the decimal expansion of 3100.

(b) 31000000 mod 35.

6 The Group of Units Modulo an Integer

56. Prove that, if there exists an element of order n− 1 modulo n,
then n is a prime.

57. Denote by ordn(a) the order of a (with gcd(a, n) = 1) modulo n.
Prove that maxa:gcd(a,n)=1 ordn(a) −→

n→∞
∞.

58. Prove that, if the order of a modulo an odd prime p is 2k, then
ak ≡ −1 (mod p).

59. Suppose a128 ≡ −1 (mod 257) for a certain a. Show that a is a
primitive root modulo 257.
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60. Let a be a primitive root modulo some odd prime p. Provide
a simple necessary and sufficient condition on p for −a to be also a
primitive root modulo p.

61. Let p be an odd prime, and a an element of order 3 modulo p.
Prove that a+1 is of order 6 modulo p. (Hint: Show that a2+a+1 ≡
0 (mod p).)

62.

(a) Show that all the odd primes appearing in the prime power
factorization of a number of the form n2 + 1 are of the form
4k+1. (Hint: Find the order of n modulo an odd prime divisor
of n2 + 1.)

(b) Conclude from the preceding part that there exist infinitely
many primes of the form 4k+1. (Hint: Suppose there exist only
finitely many primes p1, p2, . . . , pl of this form, and consider the
number (2p1p2 . . . pl)

2 + 1.)

63. Let p be an odd prime, and a a primitive root modulo p.

(a) Show that a(p−1)/2 ≡ −1(mod p).

(b) Conclude from the preceding part that the product of two prim-
itive roots modulo p cannot possibly be a primitive root mod-
ulo p.

64. Let p be an odd prime. Find the value modulo p of the product
of all primitive roots modulo p.

65. Prove that, if a is a primitive root modulo n and m|n, then a
is a primitive root modulo m.

66. Find a primitive root modulo 2929.

67. Given a positive integer n, denote by e(n) the smallest positive
integer e for which ae ≡ 1 (mod n) for every a with gcd(a, n) = 1.

(a) Express e(n)i terms of the prime power factoriztion of n.

(b) Does there necessarily exist an integer a whose order modulo n
is e(n)?
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7 Diophantine Equations

68. Show that every integer n ≥ 3 belongs to some Pythagorean
triple.

69. Find all Pythagorean triples whose terms form

(a) an arithmetic progression;

(b) a geometric progression.

70. Prove that the Diophantine equation

x2 + y2 = z4

has infinitely many solutions with gcd(x, y, z) = 1.

71. Find all solutions of the Diophantine equation

x2 + y2 = 2z2.

(Hint: Multiply both sides by 2 and write the left-hand side as a
sum of two squares.)

72. Let C denote the unit circle in the plane:

C = {(x, y) : x2 + y2 = 1} .

Prove that the set of all points on C, both of whose coordinates are
rational, is dense in C.

73. For which integers z does the Diophantine equation

x2 − y2 = z

have a solution?

74. Show that the following Diophantine equations have no solu-
tions:

(a) x2 + y2 = 4z + 3.

(b) x2 + y2 = 9z + 3.

(c) x2 + 2y2 = 8z − 3.

75. Show that the Diophantine equation

x2 + y2 = 3(s2 + t2)

has no non-trivial solutions.
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76. Show that the Diophantine equation

x3 + 2y3 + 4z3 = 6xyz

has no non-trivial solutions. (Hint: First study the possible solutions
modulo 7.)

77. Show that the Diophantine equation

x3 + 2y3 = 7(s3 + 2t3)

has no non-trivial solutions.

8 Perfect Numbers

78.

(a) Show that an even perfect number ends with either 6 or 8.

(b) Show that, moreover, it ends with either 6 or 28.

79. Find infinitely many positive integers n satisfying σ(n) = 2n−
1.

80.

(a) Prove that for any real number β ≥ 1 (or β = ∞) there exists a
sequence of integers (nk)

∞
k=1 such that σ(nk)/nk −→

k→∞
β. (Hint:

You may use the fact that the sum of reciprocals of all primes
is infinite.)

(b) Prove that for any real number γ ≤ 1 (or γ = 0) there exists a
sequence of integers (nk)

∞
k=1 such that φ(nk)/nk −→

k→∞
γ.

81.

(a) Show that an odd perfect number must have at least three
distinct prime factors.

(b) Show that an odd perfect square-free number must have at least
five prime factors.

82.

(a) Prove that, if there exist infinitely many odd perfect numbers,
then there exist infinitely many integers n satisfying σ(n) = 3n.
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(b) Verify that each of the three numbers 120, 672 and 523776 solves
the equation σ(n) = 3n.

(c) A number n is multi-perfect if n|σ(n). Verify that the numbers
30240 and 32760 are multi-perfect.

83. Two positive integers are amicable if the sum of proper divisors
of each is equal to the other. Verify that 220 and 284 are amicable,
as are 1184 and 1210.

9 Quadratic Residues and Quadratic Reciprocity

84. Find the number of solutions of each of the following congru-
ences:

(a) x2 ≡ 2 (mod 107).

(b) x2 ≡ −2 (mod 107).

(c) x2 ≡ 2 (mod 109).

(d) x2 ≡ −2 (mod 109).

85. Find the number of solutions of each of the following congru-
ences:

(a) x2 ≡ −1 (mod 899).

(b) x2 ≡ −1 (mod 578).

(c) x2 ≡ −1 (mod 1105).

86. Let r be a primitive root modulo n > 2. Show that rφ(n)/2 ≡
1 (mod n).

87.

(a) Show that, if p is a prime of the form 4k + 1, then the sum
of all quadratic residues modulo p in the interval [1, p − 1] is
p(p− 1)/4, and in particular is divisible by p.

(b) Show that, if p is a prime of the form 4k + 3, then the sum
of all quadratic residues modulo p in the interval [1, p − 1] is
divisible by p (although it cannot be p(p− 1)/4 any more).
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88. Let p be a prime. An integer a, which is relatively prime to p,
is a cubic residue modulo p if the congruence x3 ≡ a (mod p) has a
solution.

(a) Prove that, if p is of the form 3k + 2, then all integers in the
range [1, p− 1] are cubic residues modulo p.

(b) Prove that, if p is of the form 3k + 1, then exactly (p− 1)/3 of
the integers in the range [1, p− 1] are cubic residues modulo p.

89. Determine which of the following congruences are solvable.

(a) x2 ≡ 7 (mod 137).

(b) x2 ≡ −7 (mod 137).

(c) x2 ≡ 7 (mod 139).

(d) x2 ≡ −7 (mod 139).

90. Characterize all primes p for which the congruence x2 ≡ 17 (mod p)
has a solution.

91. Characterize all primes p for which
(

14
p

)
= −1.

92. Show that, if p and q are twin primes, then there exists an
integer a such that p|(a2 − q) if and only if there exists an integer b
such that q|(b2 − p).

93. Prove that, if p is a prime of the form 4k + 3, then the congru-
ence x2 ≡ −(p + 1)/4(mod p) has no solution.

94.

(a) For which primes p can you find integers a and b, relatively
prime to p, such that a2 + b2 is divisible by p?

(b) Same with any prime power pk instead of p.

(c) Same with any integer n instead of p.

10 Farey Sequences

95. Let a/b and c/d be the fractions closest to 1/2 in the Farey
sequence of order n (that is, a/b < 1/2 < c/d). Express a, b, c, d in
terms of n.
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96. Prove that the length of the Farey sequence of order n is 1 +∑n
i=1 φ(i). Find the sum of all elements of the sequence.

97. Find the minimal and the maximal distance between pairs of
adjacent Farey fractions in the Farey sequence of order n.
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