Final #1 — Questions and Solutions

1. In the course we have described two implementations of StackInter face:
The first — StackAsArray — using an array of objects, and the second
— Stack AsList — using a linked list of objects.

In this question we construct an additional implementation of the inter-
face StacklInter face, which we call MultiStack. The implementation
is similar to that of an array-stack in the sense that the elements are
held in an array of objects. The difference is that, when the array be-
comes full, it is possible to add elements by instantiating an additional
array-stack, linked to the previous in a structure of a linked list. Here
we assume that the arrays in the structure hold five elements each.

The implementation of a multi-stack is actually not that complex, as
the multi-stack may be described as an object of type list-stack, con-
sisting of a collection of array-stacks, in which the elements of the
multi-stack reside. The title of the class is as follows:

public class MultiStack extends StackAsList
implements StackInter face

Pushing an element x into a multi-stack m is performed if possible on
the top array-stack in m. If m is empty of stacks, or the top array-stack
in m is full, a new array-stack is added to m, and x is added into this
array-stack. The following drawing exemplifies two addition operations
(of the element 5 and the element 6) to the given multi-stack.

4 %top push(new Integer(5)) push(ne/vlntega'(s))
6 —>top
next

Popping an element from a (non-empty) multi-stack m is performed
from the top array-stack in m, but we make sure not to leave empty
array-stacks in m. Popping an element from an empty multi-stack
returns a null value. The following drawing exemplifies the operation
of popping the element 6 from the given multi-stack.

6 >top
[)
next

In the following you will find an incomplete definition of the class
MultiStack. In parts (a) and (b) of the question you are required
to complete the methods push() and pop() in the class MultiStack.

pop()

\V

The stack interface you have to implement is as follows:

public inter face StackInter face
{
boolean push (Object a);
Object pop();
Object peek();
boolean isEmpty();
boolean isFull();
}// inter face StackInter face

The following is a partial implementation, which you have to complete:

public class MultiStack extends StackAsList

{

implements StackInter face

public MultiStack()
{super(); }

public boolean push (Object a)

{
[/ **%*x FILL IN DEFINITION %% /

}

public Object pop()

{
[/ **%x*x FILL IN DEFINITION *xx /

}

public Object peek()

{
[/ *xx ASSUME THIS HAS BEEN IMPLEMENTED *x* %/

}

// public boolean isEmpty(){* = is inherited * *}
// public boolean isFull(){* * is inherited * x}

When pushing an element, we need to push it into the top array-stack of
the multi-stack. Prior to this, we have to make sure the top array-stack
is not full; if it is full (or if the multi-stack itself is empty), then we need
first to push an array-stack into the multi-stack. This is accomplished
by the following code:

if (isEmpty() || ((StackAsArray) super.peek()).isFull())

super.push (new StackAsArray());

((StackAsArray) super.peek()).push(a);
return true;

To pop an element, we need (assuming the multi-stack is non-empty)
to peek at the array-stack at the top of the multi-stack and perform
a pop() operation on it. If this operation empties the top array-stack
of the multi-stack, we have to pop this empty array-stack. This is
accomplished by:

Objectvalue = null,;
if (isEmpty())

value = ((Stack AsArray)super.peek()).pop();
if (((StackAsArray)super.peek()).isEmpty())
super.pop();
}

return value;

. Let MyStack be a class implementing the interface StackInter face,
defined earlier. The details of the implementation are unknown.

In Java it is possible to extend a regular class by an abstract class. The
purpose of the abstract class FilterStack is to enable “filtering” the
elements of a stack in order to remove those not satisfying some filtering
condition. The filtering condition is defined by means of an abstract
method filter(), whose role is testing an element b and returning a
false value if (and only if) b is to be removed from the stack. The
other elements are to remain in the stack according to the original
order. For example, we may employ this method to leave in a stack of
numbers only the positive ones.

(a) Complete the body of the method filtering() so that it will go
over the stack elements and removes those failing the filtering
condition.

public abstract class FilterStack extends MyStack

{
public Filter Stack()

{super(); }

public abstract boolean filter (Object b);
public void filtering()

{

}
}

/**%+x FILL IN DEFINITION * % /

The simplest is to define another stack, say sl1, of type MyStack.
Then we pop the elements of the key stack one by one, and push
those satisfying the filtering condition into s1. At this point sl
contains all required elements, but in inverse order. Now pop the
elements of s1 one by one and push each back into the key stack.
Here is the required code:

MyStack s1 = new MyStack();
while (this.isEmpty())
{

Object d = this.pop();

if (this.filter(d))

s1.push(d);

}
while (1sl.isEmpty())

this.push (s1.pop());

(b) Write the class StringStack, extending FilterStack, so that em-
ploying the filtering() method in it will leave in the stack only
elements of type String.

public class StringStack extends FilterStack

{

public StringStack()

{super(); }

[*xx FILL IN xx%x/
}

The filtering condition now is belonging to the class String. We
need to override the abstract method filter() by a method return-
ing the value true if and only if the key object is of type String.
The following code accomplishes the task:

public boolean filter (Object b)
{return (b! = null && b instanceof String);}

3. What will the following program print?

public class W hat

{

public static void process (int|[| a)
{
boolean is = true;
it 1 = a.length — 1;
while (is && i >= 1)
{
1s = false;
for(intj = 0;5 <47 =344+ 1)
if (alj] > alj +1])
int temp = aljl;
alj] = alj + 1J;
alj + 1] = temp;
18 = 1rue;

public static void main (String[] args)

{
int]] arr = {3,9,2,6,4,7,1};
process (arr);

for (inti = 0; i < arrlength; i = i + 1)
System.out.print (arr[i] + 7 7);

}
Y/ What

The method process() is a sorting method (known as bubblesort). In
fact, it first goes over all elements of the array and, whenever it finds two
consecutive elements, the smaller of which being preceded by the larger
one, switches the two. In particular, after the first pass the maximal
element is certainly at its proper place — the last. In the second pass
the second largest element will arrive at its proper place, and by the
time the outer loop finishes all passes the array will be sorted. (The
variable is makes sure that, in case the array became sorted before all
passes have been completed, the program will terminate after one more
pass.) Therefore the output in our case is:

1234679

In Questions 4-5 we shall relate to the following code:

class A

{

int _x;

public A (int i)

{x =14}

public String toString()
{return ”1”;}
}

class B extends A

{

public B (int 1)
{super (i); }

public String toString()
{return ”2";}

public A convertToA()
{return new A (z);}

}

class C {}

. What will the following program print?

public class Exam4

{

public static void main (String|| a)
{
A sl = new A (10);
A s2 = new B (20

s3);

The string representation of an A object is 71”7, while that of a B object
is 72”. Hence the output of the first print instruction is ”1” and that
of the third is ”72”. The second print command refers to a B object
(although pointed to by a variable of type A), and therefore it produces
a”2” as well. Similarly, even though the expression (A) s3 is of type A,
the object referred to is a B object, whence the fourth print command

8

also produces a ”2”. However, since the method convertToA() of class
B returns an A object, s3.convertToA() belongs to A, whence the last
print command yields a ”1”.

Thus the output is (in five separate lines): 12 2 2 1.

. Consider the following program:

public class Examb

{

public static void main (String|| a)
{
Object s5 = new A (5);
C s4 = (C) s5;
}
}

(a) The compiler will accept the code, but there will be a runtime
error due to casting.

(b) The casting will cause a compilation error, as it is disallowed to
cast from type A to type C.

(c) If s5 was a variable of type A (instead of Object), the compiler
would not accept the code, as then it would be clear that it is
impossible to perform the casting already at the stage of type
checks of the compiler.

(d) The compiler will accept the code, and the program will run with-
out errors, since the class C is a special case of the class A.

(e) The compiler will reject the code since it is disallowed to define a
variable of an abstract type, and Object is an abstract class.

(f) None of the above.

At the time of compilation, it is impossible to know precisely the type
of an object to which a certain variable refers. It may be of the type

9

of the variable or any type extending it. Since s5 is declared of type
Object, the compiler will “believe” that the casting is possible. During
runtime, however, there will be an error since an A object cannot be
cast to class C. If s5 was declared to be of type A, the casting would
be obviously wrong at compilation time.

A variable may well be of a type of an abstract class, although any
object it refers to during runtime must be of a type of an extending
non-abstract class. Object is not an abstract class.

Thus, only (a) and (c) are correct.

. We are given two arrays of integers arrl and arr2. Both arrays are
long, arr2 being much longer than arrl. For example, you may sup-
pose that the length of arr2 is the square of the length of arrl. A
common operation, which we will be required to perform many times
(henceforward “the operation”), is the following: Given an integer d,
find an element z in arr1 and an element y in arr2 such that y—x = d.
Then:

(a) If both arrays are sorted, then the operation may be performed by
a simple binary search on the differences.

(b) It is possible to perform this operation by means of a double loop,
which examines all pairs of elements (one from each array). Using
this method, it makes no difference if the arrays are sorted before
performing the search.

(c) If we sort both arrays beforehand, then we can perform the oper-
ation by means of a loop, which examines all elements of one of
the arrays, and for each of them performs a binary search for an
appropriate value (according to d) in the other array.

(d) It is possible to improve the implementation described in (c) by
sorting only one of the two arrays, and it makes no difference if
this is the array all of whose elements are searched or the other
array.

(e) It is possible to improve the implementation described in (c) by
sorting arrl in increasing order and arr2 in decreasing order.

10

(f) It is possible to improve the implementation described in (c) by
sorting only one of the two arrays. It is better to sort only arr2,
even though it is much longer and requires more operations for its
sorting than does arrl.

If one of the arrays, say arrl, is sorted, then one needs to go over all the
elements of the other array, and for each such element arr2[i| search
for an occurence of the number arr2[i] — d in arrl. The search may
be binary since arrl is sorted. With this algorithm it would be of no
consequence if arr2 was sorted as well. (It is possible, though, to take
advantage, albeit very small, of arr2 being sorted, but this is true for
another algorithm.)

It is better to have arr2 sorted than to have arrl sorted. Indeed, since
binary search is very fast, it makes more sense to go over all elements
of arrl and have the big saving on the longer array arr2, rather than
doing it vice versa. (One can quantize these intuitive argument as
follows. If arrl is sorted, then the loop over the elements of arr2 is
of length n?, and the length of each cycle is logn, so that the time
required for the whole search is of the order of magnitude of n?logn.
However, if arr2 is sorted, then the outer loop extends over n elements,
and the length of each cycle is logn? = 2logn. Now for large n the
first expression is much larger than the second.)

Thus, only (b) and (f) are correct.

. The following sorting algorithm for integer arrays has been proposed:
Given an array arr of length n of integers, perform the following oper-
ations:

i. Interchange arr[0] and arr[k], where k is the number of elements
among arr[l], arr[2],..., arr[n — 1] which are smaller than arr|[0].

ii. Interchange arr[1] and arr[k+1], where k is the number of elements
among arr[2], arr[3],..., arr[n — 1] which are smaller than arr[1].
iii. Continue for 7 = 2, 3,..., n — 2 in the same way. Namely, inter-
change arr[i] and arr[k +i|, where k is the number of elements among
arri +1],..., arr[n — 1] which are smaller than arri].

11

(a) The proposed algorithm does not always work correctly.

(b) The proposed algorithm works correctly for arrays consisting of
distinct integers.

(c) The proposed algorithm works correctly and performs the same
element interchanges as insertionSort().

(d) The proposed algorithm works correctly and performs the same
element interchanges as selectionSort().

(e) The proposed algorithm is correct, but distinct from the algorithms
we have encountered in class.

(f) None of the above.

The initial stage of the algorithm performs a reasonable operation —
it places arr[0] at the place it should occupy, which is the k-th place
if there are exactly k elements in the array below arr[0]. However, in
all subsequent stages, the element moved to place 0 at the first stage
remains untouched. For example, if arr is the array {1,2,0}, then
the first stage changes it to {2,1,0}, and the second (and last) stage
changes it to {2,0,1}.

Thus, only (a) is correct.

. A, B and UseAB are three given classes in some directory. The class
B extends A. The (only) constructors of A and B are as follows:

A (int n)
{
for (inti=0; i < n; i++)
new A (i);
System.out.printin (" Computer Science”);

}

B (int n)
{

12

super (n);
for (inti = 0; i < n; i+ +)
new B (i);

The main method of the class UseAB contains the line: B b =
new B (4);
The number of lines printed due to this instruction is:

None of the above.

For n = 0, the loop in the constructor of A is not executed, so that the
output due to instantiating an element of A with parameter 0 consists
of a single line. For n = 1, we instantiate an A element with parameter
0, and then print another line, and thus 2 lines are printed. For n = 2
we similarly find that 1 + 2 + 1 = 4 lines are printed, for n = 3 we
obtain 1+ 2+ 4 + 1 = 8 lines, and for general n we find (formally by
induction) that 2" lines are printed upon instantiating an element of A
with parameter n.

Instantiating an element of B with parameter 0 is equivalent to instan-
tiating an element of A with the same parameter, so that a single line
is printed. In general, the number of printed lines is the same as that
generated by instantiating an element of A with the same parameter
and in addition by instantiating elements of B with all parameters be-
tween 0 and n — 1. Thus, for n = 1 we obtain 2+ 1 = 3 lines, for n = 2
we obtain 4 + 1 4 3 = 8 lines, and in the general case (again, formally
by induction) the number of printed lines is (n + 2)2"~!'. For n = 4,
this gives 48 lines.

Thus, only (d) is correct.

13

