
Review Questions

Mark the correct answer in each part of the following questions.

1. Let A be a set of size 6. Consider the graph G = (V, E), where V = 2A

(the set of all subsets of A) and E = {(B, C) : B, C ⊆ A, |B| 6= |C|}.

(a) The independence number of G is

(i) α(G) = 6.

(ii) α(G) = 7.

(iii) α(G) = 20.

(iv) α(G) = 36.

(v) none of the above.

(b) The chromatic number of G is

(i) χ(G) = 6.

(ii) χ(G) = 7.

(iii) χ(G) = 8.

(iv) χ(G) = 9.

(v) none of the above.

(c) Let H be the subgraph of G, induced by some clique of size ω(G)
and one additional vertex (altogether, ω(G) + 1 vertices). The
number τ(H) of spanning trees of H

(i) cannot be determined without knowing the exact vertices
of H.

(ii) is 0 since H is disconnected.

(iii) is necessarily 5 · 73.

(iv) is necessarily 6 · 84.

(v) is none of the above.
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2. Define (for the purpose of this question only) a semi-Latin square to be
an n×n square, where n = 2m is even, satisfying the same requirements
as does a Latin square, except for the following change regarding the
columns: Instead of requiring that all entries in each column be dis-
tinct, we require that, in each column, the first m entries should be
distinct, but the last m entries should be entries that already appeared
among the first m. (For example, the square

3 1 4 2
2 4 1 3
2 1 4 3
3 4 1 2

is a semi-Latin square with n = 4.)

(a) Denote by an the lower bound obtained in class for the number of
n× n Latin squares, namely:

an =
n!2n

nn2 .

Employ the method, used to arrive at the bound an, to find a
lower bound on the number of n × n (with n = 2m) semi-Latin
squares. The bound we obtain is:

(i) mm2

m!m
· an.

(ii) m2m2

m!2m · an.

(iii) m2m2

(2m)!m
· an.

(iv) (2m)m2

(2m)!m
· an.

(v) none of the above.

(b) Now recall the method we used to bound the number of Latin
squares from above. Employing the same method to bound the
number of semi-Latin squares, we arrive at the upper bound:

(i) (n− 0)!
n

n−0 (n− 1)!
n

n−1 . . . (n− (m− 1))!
n

n−(m−1) (m− 1)!2(m−1).

(ii) (n− 0)!
n

n−0 (n− 1)!
n

n−1 . . . (n− (m− 1))!
n

n−(m−1) (m− 1)!2m.

(iii) (n− 0)!
n

n−0 (n− 1)!
n

n−1 . . . (n− (m− 1))!
n

n−(m−1) m!2m.
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(iv) (n−0)!
n

n−0 (n−1)!
n

n−1 . . . (n− (m−1))!
n

n−(m−1) (m+1)!2(m+1).

(v) none of the above.

3. Let G be a graph with 100 vertices and 1000 edges, and V0 a clique of
size 7 in G. The vertices of V0 are colored in 7 distinct colors. The
coefficient of k92 in χ(G, V0, k) is:

(i) −993.

(ii) −985.

(iii) −979.

(iv) −972.

(v) none of the above.

4. In the matrix-tree theorem and its proof we have defined matrices Q, C,
that satisfied the equality CCT = Q. Now consider the matrix C for a
connected graph G on n ≥ 3 vertices, which is not a tree. The sum of
all columns of C is

(i) necessarily 0.

(ii) 0 if and only if G is (isomorphic to) Cn.

(iii) 0 if G is (isomorphic to) Kn, but the converse is not true.

(iv) is necessarily distinct from 0.

(v) none of the above.
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Solutions

1. (a) Since subsets of A are neighbors in G if and only if they are of
distinct size, a set of vertices is independent in G if and only if
all of them are sets of the same size. Now A includes sets of sizes
0 through 6, specifically

(
6
k

)
sets of each size k is this range. The

maximum is obtained for k = 3, for which
(
6
3

)
= 20. Thus, the set

of all subsets of A of size 3 is an independent set of cardinality 20
(and is the only one of this cardinality).

Thus, (iii) is true.

(b) Cliques are collections of subsets of A, all of different sizes. By
taking one subset of each size 0, 1, . . . , 6, we thus get a maximum
clique. Hence ω(G) ≥ 7, and therefore χ(G) ≥ 7. On the other
hand, assigning to each subset B of A the color |B|, we clearly
obtain a proper coloring of G.

Thus, (ii) is true.

(c) In view of the discussion in the preceding part, H must consist
of 7 subsets B0, B1, . . . , B6 of A, of sizes 0, 1, . . . , 6, respectively,
and one additional B ⊆ A. Whatever B is, it neighbors all Bi’s,
except for the one which is of the same size as B. It follows that
H is K8, with one edge removed.

The number of spanning trees of K8 is 88−2 = 86. To find τ(G), we
need to find the number of spanning trees of K8, containing the
edge which is missing in G. Now each spanning tree of K8 consists
of 7 edges, out of the total

(
8
2

)
= 28 edges of K8. By symmetry,

each edge of K8 belongs to the same number of spanning trees of
K8, so it belongs to 7

28
· 86 spanning trees. It follows that:

τ(G) = 86 − 7

28
· 86 = 6 · 85.

Thus, (v) is true.
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2. (a) In the case of a Latin square, we have seen that, when we fill it
in row after row, there are at least (n − k)n · n!

nn possibilities for
filling row k + 1 for each k. In our case, for the first m rows there
is no difference, as the constraints for these rows are exactly the
same as for Latin squares, so that we have at least

nn · n!

nn
· (n− 1)n · n!

nn
· . . . · (m + 1)n · n!

nn

possibilities for filling in the top half of the square. However,
when we continue, things become different from the case of Latin
squares. Namely, when filling in any of these rows, we have m
possibilities for each entry, and therefore at least mn · n!

nn possibil-
ities for the entire row. In other words, the lower bound for the
number of possibilities for filling in row m + k, for any k in the
range [1, m], is mn/(m − k + 1)n times the corresponding bound
for Latin squares. Thus, the lower bound we obtain is

mn

mn
· mn

(m− 1)n
· mn

(m− 2)n
· . . . · mn

1n
an =

mmn

m!n
an =

m2m2

m!2m
an.

Thus, (ii) is true.

(b) Similarly to the preceding part, the number of possibilities for
filling in the top half of the square is, just as in the case of Latin
squares, bounded above by

(n− 0)!
n

n−0 · (n− 1)!
n

n−1 · . . . · (n− (m− 1))!
n

n−(m−1) .

In the bottom part of the square, for each entry of each row we
have m possibilities, and therefore for each row we have at most
m!n/m = m!2 possibilities. Consequently, the number of possibil-
ities for the bottom part is bounded above by (m!2)m, and alto-
gether we obtain the upper bound

(n− 0)!
n

n−0 · (n− 1)!
n

n−1 · . . . · (n− (m− 1))!
n

n−(m−1) ·m!2m.

Thus, (iii) is true.
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3. Assume first that G is connected. Recall the formula we have proved
in class:

χ(G, V0, k) =
∑
G′�G

µ(G′, G)k|V (G′)|−|V0|. (1)

The contribution of G′ = G to the sum on the right-hand side is
k100−7 = k93. The contribution of each G′, obtained from G by con-
tracting a single edge, is −k92. Now the edges we contract are only
those with at least one endpoint not in V0. Since V0 is a clique,
there are

(
7
2

)
= 21 edges with both endpoints in V0. Hence there are

1000−21 = 979 edges with at least one endpoint outside V0. Hence the
total contribution to the right-hand side of (1) is −979k92. Graphs G′

obtained by contracting two or more edges of G contribute monomials
of degree at most 91 in k. Hence the coefficient of k92 in χ(G, V0, k) is
−979.

Now suppose G is not necessarily connected. Let G1, . . . , Gr be the con-
nected components of G, where, without loss of generality, G1 is the
component containing the clique V0. Let Gi = (Vi, Ei). By the consid-
erations above, applied to G1, the polynomial χ(G1, V0, k) is monic of
degree |V1|− |V0|, and the coefficient of k|V1|−|V0|−1 is −(|E1|−21). The
initial coloring of V0 is irrelevant to G2, . . . , Gr. Hence each Gi with
i ≥ 2 can be colored in χ(Gi, k) ways, where the polynomial χ(Gi, k)
is monic of degree |Vi|, and the coefficient of k|Vi|−1 is −|Ei|. Now:

χ(G, V0, k) = χ(G1, V0, k) ·
r∏

i=2

χ(Gi, k).

The product is a polynomial of degree 93, and the coefficient of k92 is
easily seen to be

−(|E1| − 21)− |E2| − . . .− |Er| = −|E|+ 21 = −979.

Thus, (iii) is true.

4. Due to the definition of C, the entries in the first row are in any case
either 0 or 1. Now all these entries are 0 only if V1 has no neighbors,
which contradicts the fact that G is connected. Hence already the first
entry of the sum of the columns of C is strictly positive.

Thus, (iv) is true.
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