Review Questions

1. Let $d_{1} \geq d_{2} \geq \ldots \geq d_{n} \geq 1$ be integers. Consider the following two claims:
I. If $d_{1}, d_{2}, d_{3}, d_{4}, \ldots, d_{n}$ is a graphic sequence, then so is also the sequence $d_{1}-1, d_{2}-1, d_{3}, d_{4}, \ldots, d_{n}$.
II. If $d_{1}-1, d_{2}-1, d_{3}, d_{4}, \ldots, d_{n}$ is a graphic sequence, then so is also the sequence $d_{1}, d_{2}, d_{3}, d_{4}, \ldots, d_{n}$.
(i) Both claims are true.
(ii) Claim I is true, while claim II is false.
(iii) Claim I is false, while claim II is true.
(iv) Both claims are false.
2. Let $G=(V, E)$, where $V=\{2,3,4, \ldots, 30\}$, and $u, v \in V$ are adjacent if they have a non-trivial common divisor. (For example, $(12,18) \in E$ since 6 divides both 12 and 18 , but $(10,21) \notin E$ since 1 is the only common divisor of 10 and 21.)
(a) The clique number $\omega(G)$ of G is
(i) 8.
(ii) 9 .
(iii) 10 .
(iv) 11 .
(v) None of the above.
(b) The independence number $\alpha(G)$ of G is
(i) 1 .
(ii) 6 .
(iii) 7 .
(iv) 8 .
(v) None of the above.
(c) The coloring number $\chi(G)$ of G is
(i) 9 .
(ii) 10 .
(iii) 11 .
(iv) 12 .
(v) None of the above.
3. A Latin cube is an $n \times n \times n$ cube, at each of whose entries one of the numbers $1,2, \ldots, n$ is written, in such a way that every pair of entries seeing each other (along lines parallel to the x-axis, the y-axis, or the z-axis) contain different numbers. Let $L_{3, n}$ be the 3 -dimensional analogue of the graph L_{n} introduced in class in regard to Latin squares. Then the coefficient of $k^{n^{3}-1}$ in $\chi\left(L_{3, n}, k\right)$ is:
(i) $-\frac{3 n(n-1)(2 n-1)^{2}}{8}$.
(ii) $-\frac{3 n(n-1)^{3}}{2}$.
(iii) $-\frac{3 n^{2}(n-1)^{2}}{2}$.
(iv) $-\frac{3 n^{3}(n-1)}{2}$.
(v) None of the above.
4. We use the greedy algorithm to color a tree T (without the improvement whereby we order the vertices according to non-increasing degrees). Let k be the number of colors in the resulting coloring.
(i) We necessarily have $k=\chi(T)$.
(ii) We necessarily have either $k=\chi(T)$ or $k=\chi(T)+1$. Both cases may occur.
(iii) There exists a constant C such that we necessarily have $k \leq C$, but the former two claims are false.
(iv) The gap $k-\chi(T)$ may be arbitrarily large.
(v) None of the above.

Solutions

1. Claim I is true. One way to see it is by using the Havel-Hakimi proof that the sequence $d_{2}-1, d_{3}-1, \ldots, d_{k+1}-1, d_{k+2}, \ldots, d_{n}$ (where $\left.k=d_{1}\right)$ is graphic. In that proof, we have seen that there exists a graph $G=(V, E)$, with vertices $v_{1}, v_{2}, \ldots, v_{n}$ and corresponding degrees $d_{1}, d_{2}, \ldots, d_{n}$, in which v_{1} neighbors the vertices $v_{2}, v_{3}, \ldots, v_{k+1}$. Removing the edge $\left(v_{1}, v_{2}\right)$ from this graph, we obtain a graph with vertex degrees $d_{1}-1, d_{2}-1, d_{3}, d_{4}, \ldots, d_{n}$.

Claim II is false. In fact, let $d_{1}-1, d_{2}-1, d_{3}, d_{4}, \ldots, d_{n}$ be the sequence of vertex degrees of any graph in which one of the vertices is adjacent to all others (such as K_{n} or S_{n}). Then $d_{1}-1=n-1$, so that $d_{1}=n$, and the sequence $d_{1}, d_{2}, \ldots, d_{n}$ cannot possibly be graphic.

Thus, (ii) is true.
2. (a) The set $\{2,4, \ldots, 30\}$ is a clique (since every two of its elements have the number 2 as a common divisor). As its size is 15 , we have $\omega(G) \geq 15$.

On the other hand, if $A \subseteq V$ is any set of size 16 or more, it must contain two consecutive integers. Such integers certainly have no non-trivial common divisor, and hence A is not a clique. Hence,
$\omega(G) \leq 15$.
Altogether, $\omega(G)=15$.
Thus, (v) is true.
(b) Two elements of V have no non-trivial divisor if and only if the sets of primes dividing them are disjoint. Now up to 30 there are 10 primes - the numbers $2,3,5,7,11,13,17,19,23,29$. If A is an independent set, then the sets of primes attached to its elements are pairwise disjoint subsets of this set of primes. Hence, $\alpha(G) \leq 10$.

On the other hand, the set of all primes in V is certainly independent, so that $\alpha(G) \geq 10$.

Altogether, $\alpha(G)=10$.

Thus, (v) is true.
(c) Since in general $\chi(G) \geq \omega(G)$, we have $\chi(G) \geq 15$ (which suffices to answer this question, but we will find $\chi(G)$ exactly anyway).

Recall that the improved coloring algorithm, presented in class, starts by ordering the vertices according to their degrees, so that $d\left(v_{1}\right) \geq d\left(v_{2}\right) \geq \ldots \geq d\left(v_{n}\right)$. It provides a coloring using at most $\max _{1 \leq i \leq n} \min \left\{d\left(v_{i}\right)+1, i\right\}$ colors. In our case, the vertices $2,4, \ldots, 30$ will appear first in the ordering, as their degrees are all at least 14. (The degrees of some are quite higher; the maximum is obtained for 30 , whose degree is 21.) These vertices, forming a clique, will be colored using colors 1 through 15 . However, none of the other vertices has a degree exceeding 14. In fact, the maximum for these vertices is obtained for the vertex 15 , whose degree is 13 . Hence we obtain this way a proper coloring using 15 colors.

Altogether, $\chi(G)=15$.

Thus, (v) is true.
3. As $L_{3, n}$ has n^{3} vertices, $\chi\left(L_{3, n}, k\right)$ is a polynomial of degree n^{3}. The coefficient of $k^{n^{3}-1}$ is $-|E|$, where E is the number of edges of the graph. Each vertex is adjacent to $n-1$ other vertices in each of the three directions - altogether $3(n-1)$ vertices. Hence the number of edges is

$$
|E|=\frac{n^{3} \cdot 3(n-1)}{2}=\frac{3 n^{3}(n-1)}{2} .
$$

Thus, (iv) is true.
4. Recall that the coloring number of every tree with at least 2 vertices is 2 . We claim that, for each positive integer k, there exists a tree, for which the greedy algorithm, for some ordering of the vertices, will provide a coloring by k colors.

We proceed by induction. For $k=1$, take a tree with a single vertex. For the induction step, suppose we have already constructed trees $T_{1}, T_{2}, \ldots, T_{k}$, such that each T_{j}, for an appropriate ordering of the vertices, is colored by j colors. Take the graph $T_{1}+T_{2}+\ldots+T_{k}$. (Namely, we take the union of the sets of vertices and the union of the sets of edges of $T_{1}, T_{2}, \ldots, T_{k}$.) Add to this graph one vertex v. For each $j \leq k$, connect v to one of the vertices of T_{j} who have been colored by color j. Obviously, the graph we obtain is a tree. If we color this tree by the greedy algorithm, coloring first each T_{j} according to the order specified above, and finally coloring v, we obtain a coloring by $k+1$ colors. Indeed, since there are no edges between the various T_{j} 's, when we get to color any T_{j}, the colors assigned to the vertices of other T_{i} 's do not matter. In particular, the neighbors of v in the graph we have constructed are colored in all colors $1,2, \ldots, k$, so that v will have to be colored in color $k+1$.

Thus, (iv) is true.

