
Graph Theory

Exercises

1 Graphic Sequences

1. We have shown in class that, in a finite graph, the number of
vertices with an odd number of neighbors is even. Show that the
result does not hold in an infinite graph even if we assume that each
vertex has a finite degree and that the number of vertices with an
odd number of neighbors is finite.

2. In a class with n students, each student is required to send
Good-Year cards to k of his classmates. For which pairs (n, k) can
it be the case that each student will receive cards exactly from the
students he has sent cards to?

3. Employing the Havel-Hakimi Theorem, decide whether each of
the following sequences is graphic. If it is – construct a suitable
graph, otherwise – prove it is not.

(a) (4, 3, 2, 2, 1, 1, 1).

(b) (4, 4, 3, 1, 1, 1, 0).

4. For which pairs of non-negative integers (a, b) does there exist
a connected graph on a+ b vertices, of which a vertices are of even
degrees and b of odd degrees?

5.

(a) Show that, in the sequence of vertex degrees of a graph, there
must be at least two equal numbers.

(b) Show that the claim is false for multi-graphs. Is it true if the
multi-graph is not allowed to contain loops?
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6.

(a) Show that, for each n, there exist sequences (d1, d2, . . . , dn) for
which there exist unique (up to isomorphism) graphs with these
sequences of degrees.

(b) Show that, for sufficiently large n, there exist non-isomorphic
n-vertex graphs with the same sequence of degrees.

(c) Show that you cannot always determine by the sequence of
degrees of a graph whether it is connected or not.

(d) Show that you cannot always determine by the sequence of
degrees of a graph whether it is a tree or not.

7. Prove that, for each k, the sequence

(k, k, k − 1, k − 1, k − 2, k − 2, . . . , 2, 2, 1, 1)

is graphic.

8. Show that a non-increasing sequence d1, d2, . . . , dn of non-negative
integers is the sequence of degrees of a multi-graph without loops if
and only if

∑n
i=1 di is even and d1 ≤ d2 + d3 + . . .+ dn.

9. Let d1, d2, . . . , dn be a non-increasing sequence of non-negative
integers, and let 1 ≤ k ≤ n. Show that the given sequence is
graphic if and only if, deleting dk from the sequence and reducing
the dk largest remaining elements by 1 each, we obtain a graphic
sequence.

10. Let d1, d2, . . . , dn be a non-increasing sequence of non-negative
integers with even sum, satisfying d1 ≤ n−1 and d1 ≤ dn+1. Prove
that the sequence is graphic.

11. Redo Problem 3, employing the Erdős-Gallai Theorem instead
of the Havel-Hakimi Theorem.

12. The sequences d1, d2, . . . , dm and d′1, d
′
2, . . . , d

′
n are both graphic.

For each of the following sequences, determine whether it is neces-
sarily graphic or not. (Hint: When suspecting that the answer is
affirmative, try to realize the sequence directly rather than using
the Havel-Hakimi Theorem or the Erdős-Gallai Theorem.)

(a) d1 + 1, d2 + 1, . . . , dm + 1.

(b) d1 − 1, d2 − 1, . . . , dm − 1, where it is given that m is even and
all di’s are strictly positive.

(c) 2d1, 2d2, . . . , 2dm.
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(d) d1, d2, . . . , dm, d
′
1, d
′
2, . . . , d

′
n.

(e) d1 + n, d2 + n, . . . , dm + n, d′1 +m, d′2 +m, . . . , d′n +m.

(f) d1 + 1, d2 + 1, . . . , dm + 1, d′1 + 1, d′2 + 1, . . . , d′m + 1, where in this
part it is assumed that n = m.

(g) (di + d′j)
m,n
i,j=1,1.

(h) (did
′
j)

m,n
i,j=1,1.

13. Let d1, d2, . . . , dn and d′1, d
′
2, . . . , d

′
n be two sequences of non-

negative integers. The latter is obtained from the former by a bal-
ancing step if, for some indices k and l satisfying dk ≥ dl + 2, we
have d′k = dk − 1 and d′l = dl + 1, while for all other indices i we
have d′i = di. The sequence d′1, d

′
2, . . . , d

′
n is more balanced than

d1, d2, . . . , dn if it is obtained from it by several balancing steps.

(a) Prove that, if d1, d2, . . . , dn is a graphic sequence, and d′1, d
′
2, . . . , d

′
n

is more balanced than it, then d′1, d
′
2, . . . , d

′
n is a graphic se-

quence as well.

(b) Show that it is possible for d′1, d
′
2, . . . , d

′
n to be a graphic se-

quence, even though d1, d2, . . . , dn is not.

14. Let the mean deviation of a finite sequence of numbers (ai)
n
i=1

be defined by 1
n

∑n
i=1 |ai− ā|, where ā = 1

n

∑n
i=1 ai. Given two finite

sequences (ai)
n
i=1 and (bi)

n
i=1 of the same length and total sum, the

second is at least as concentrated as the first if its mean deviation
does not exceed that of the first.

(a) Prove that, if a sequence is more balanced (see Problem 13)
than another, then it is at least as concentrated.

(b) Is a sequence, which is at least as concentrated as some given
graphic sequence, necessarily graphic as well?

2 Graph Coloring

15.

(a) Prove that, for every positive integers n and k, with 1 ≤ k ≤ n,
there exists a graph G on n vertices such that χ(G) = k.

(b) Prove the following claim (which implies the one in the preced-
ing part): Let G = (V,E), where |V | = n and χ(G) = l. Then
for every 1 ≤ k < l there exists a set E ′ ⊂ E such that, denot-
ing G′ = (V,E ′), we have χ(G′) = k. Also, for every l < k ≤ n
there exists a set E ′′ ⊃ E such that, denoting G′′ = (V,E ′′),
we have χ(G′) = k.
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16. Find a graph G and a vertex v such that, removing the ver-
tex v (and the incident edges) from G, the chromatic number of G
decreases, and the same holds for G.

17. Find a 3-coloring of C5 � C5, such that the numbers of vertices
colored in the 3 colors are 9, 8 and 8.

18. Let G1 = (V,E1) and G2 = (V,E2) be two graphs on the
same set of vertices, and let G = (V,E1 ∪ E2). Show that it is not
necessarily the case that χ(G) ≤ χ(G1) + χ(G2).

19. The plane is divided into regions by means of finitely many
straight lines. Show that the resulting map may be colored using 2
colors.

20. Let G be the graph on the vertex set {0, 1, . . . , n− 1}, where
i and j are adjacent if j − i = ±1,±2, . . . ,±k modulo n, for some
specific positive integer k < n−1

2
. Prove that, if n is divisible by

k + 1, then χ(G) = k + 1, while if it is not then χ(G) ≥ k + 2.

21. Find the clique number of the following graphs:

(a) Kn.

(b) Kn1,n2,...,nk
.

(c) Cn.

(d) Pn.

(e) Km � Kn.

22. Find the independence number of the following graphs:

(a) Kn.

(b) Kn1,n2,...,nk
.

(c) Cn.

(d) Pn.

(e) Km � Kn.

(f) Perfect binary tree of height n (namely, a binary tree of height
n, having 2k nodes at each level k ≤ n).

23. Identify the following graphs:

(a) Km ∨Kn.

(b) Km ∨Kn.
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24. Prove that it is impossible to bound from above the chromatic
number of a graph in terms of the average of all vertex degrees.

25. Prove that every graph admits an ordering of the vertices, for
which greedy coloring yields an optimal coloring.

26.

(a) Suppose we have finitely many straight lines in the plane, no
three of which meet at a single point. Form a graph, whose
vertices are all intersection points of two of the lines, where
two vertices are adjacent if they are consecutive intersection
points on the same line. Show that the chromatic number of
the graph is at most 3. (Hint: Explain why we may assume
that no two vertices have the same x-coordinate. Use greedy
coloring, where the order of the vertices is related to their x-
coordinates.)

(b) Is the condition, whereby no three of the lines meet at a single
point, required?

27. Let A1, A2, . . . , Ak be finite sets and V = A1 ×A2 × . . .×Ak.
Let G = (V,E), where E consists of all pairs (a1, a2, . . . , ak) and
(a′1, a

′
2, . . . , a

′
k) satisfying ai 6= a′i for every 1 ≤ i ≤ k. Determine

χ(G) (in terms of the sizes |Ai|).

28. Show that the following polynomials are not chromatic poly-
nomials of any graph:

(a) k10 − 4k8.

(b) k5 − 5k4 + 4k3.

(c) k7 + 2k6 − 14k5 + 26k4.

(d) k9 − 12k8 − 14k7 + 5k6.

29. Show that there is a unique (up to isomorphism) graph whose
chromatic polynomial is:

(a) kn.

(b) k(k − 1)(k − 2) . . . (k − n+ 1).

(c) kn−1(k − 1).

(d) kn−2(k − 1)(k − 2).

30. Show that there are exactly two non-isomorphic graphs whose
chromatic polynomial is kn−2(k − 1)2.
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31. Find all chromatic polynomials of the form k10−3k9+
∑8

i=0(−1)iaik
8−i.

32. Show that for each N there exists a polynomial such that there
exist at least N mutually non-isomorphic graphs whose chromatic
polynomial is the given polynomial.

33. Prove that the zeros of the chromatic polynomial of any n-
vertex graph do not exceed n− 1.

34.

(a) Write the chromatic polynomial of the graph G ∨Kn in terms
of the chromatic polynomial of G.

(b) The wheel graph on n vertices is denoted by Wn, and defined as
the graph obtained from Cn−1 by adding to it one vertex and
connecting this vertex with all others. Calculate χ(Wn, k).

35. Find the chromatic polynomials of the following graphs:

(a) Pn � K2.

(b) Sn � K2.

36. Let G be a connected graph and χ(G, k) =
∑n

i=0(−1)iaik
n−i

its chromatic polynomial. Prove that ai ≥
(
n−1
i

)
for each i.

37. Express the third coefficient in the chromatic polynomial of
G (namely, the coefficient of k|V |−2) in terms of |V |, |E| and the
number of independent sets of size 3 in G.

38. Consider the lower and upper bounds we obtained on the num-
ber of possibilities of filling in any row k+ 1 of a Latin square n×n
we construct, given the preceding k rows.

(a) Explain why, for k = 1, namely when filling in the second row,
the number of possibilities does not depend on our choice of
the first row.

(b) Find the number of possibilities for filling in the second row.

(c) Show that the ratio between this exact number and both the
upper and the lower bounds we obtained is multiplicatively
negligible as n→∞ (namely, it is 1 + o(1)). Conclude that we
would have gained very little by replacing our bounds by the
correct value.
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39. Show that, contrary to the situation in the preceding exercise
regarding the number of possibilities for filling in the second row of
a Latin square, the number of possibilities for filling in the third row
depends in a non-trivial way on the choices of the first two rows.

40.

(a) Show that, for an arbitrary fixed k, the ratio between the upper
and the lower bounds we obtained on the number of possibilities
for filling in row k + 1 of a Latin square n × n we construct,
given the preceding k rows, tends to 1 as n→∞.

(b) Conclude that the number of possibilities for filling in row k+1
is n!

ek
· (1 + o(1)).

(c) Show that the result of part (a) does not hold if k is allowed to
vary over the whole range [1, n− 1]. Specifically, show that the
ratio in question behaves as C

√
n for some constant C > 0 for

k = n/2− 1 (and even n).

41.

(a) Show that the ratio between the upper and the lower bounds we
obtained on the number of possibilities for filling in row n− 1
of a Latin square n×n we construct, given the preceding n− 2
rows, grows exponentially as a function of n.

(b) Show that, in fact, already the ratio between the true value and
the lower bound grows exponentially as a function of n.

(c) Show that the ratio between the upper bound and the true
value is exponentially large for some fillings of the first n − 2
rows.

(d) Show that, on the other hand, for some fillings of the first n−2
rows (and even n), the upper bound actually yields exactly the
true value.

(e) Show that, for the last row, the lower bound misses the true
value by an exponentially growing factor, while the upper bound
yields the correct value.

42. Consider the set M2,n of all 2×n rectangles (aij)
2,n
i,j=1,1, each of

whose entries is marked by one of the numbers 1, 2, . . . , n, satisfying
the following constraints:

(i) All labels in each row are distinct.

(ii) Each label in each row is different from the label above/below
it, as well as the labels on the sides of that entry. Namely,
aij 6= ai+1,j−1, ai+1,j, ai+1,j+1 for i = 1, 2 and 1 ≤ j ≤ n. Here,
we consider the first index modulo 2 and the second modulo n.
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Thus, the label at each entry should be different than the other n−1
labels on that row and from 3 of the labels in the other row.

(a) Employ the method, used in class to bound from below the
number of Latin squares, to bound |M2,n| from below.

(b) Same for an upper bound.

(c) How close are the two bounds you obtained?

43. Let M denote the matrix of order n, all of whose diagonal
elements are a and all off-diagonal elements are b, where a and b
are any constants. Express the permanent of M in terms of the
derangement numbers dk (counting the number of permutations on
a k-element set, having no fixed points).

44. For each of the following posets, find µ(m,x) for every x in
the poset, where m is the minimal element of the poset.

(a) P – the set of all finite subsets of even size of {1, 2, . . . , 10},
with A � B if A ⊆ B.

(b) P – the set of all subsets of the form A′ ×B′ of the set A×B,
where |A| = 2 and |B| = 3, with X � Y if X ⊆ Y .

(c) P – the set of all points with integer coordinates between 0
and 3 in the plane, with (x1, y1) � (x2, y2) if both x1 ≤ x2 and
y1 ≤ y2.

(d) Same for points in 3-dimensional space.

(e) P – the set of all divisors of of an arbitrary fixed positive integer
n, where a � b if a divides b.

(f) P – the set of all (non-degenerate) triangles with integer sides
between 1 and 3, with T1 � T2 if T1 can be obtained from T2
by shortening some of the sides.

(g) P – the set of all linear subspaces of (Z/pZ)2, where p is a
prime, with V1 � V2 if V1 ⊆ V2.

(h) P – the set of all substrings of an arbitrary fixed string over
some finite alphabet, where s1 � s2 if s1 is a substring of s2.
(The minimal element is the empty string.)

45. Same as the preceding question for the following graph-related
posets:

(a) P – the set of all spanning subgraphs of an arbitrary fixed graph
G, with G1 � G2 if G1 is a subgraph of G2.
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(b) P – the set of all subgraphs of P3, with G1 � G2 if G1 is a
subgraph of G2.

46. Let T be a rooted tree, and � the partial order defined on
V (T ) by: v2 � v1 if v2 is a descendant of v1. Let f : V (T )−→Z be
the constant function 1.

(a) Let g be defined in terms of f as in the Möbius inversion for-
mula. What does g signify?

(b) Prove directly that the Möbius inversion formula is satisfied in
this case.

47. Calculate χ(G, V0, k) for the following graphs using the ma-
chinery developed in class (although it is completely unnecessary in
these simple cases). The set V0 is the set of vertices whose label is
shown, and the color of the vertices is according to the specification
next to their label.

(a)

(b)

3 Spanning Trees

48.

(a) Find the number of spanning paths of Kn.

(b) Same for cycles instead of paths.
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(c) Same as the preceding two parts for Kmn.

49.

(a) How many spanning trees does an n-vertex graph have on the
average? (More precisely, we take all graphs on n labeled ver-
tices, and take the average of the number of spanning trees over
this set.)

(b) Same for spanning paths instead of spanning trees.

(c) Same for spanning stars.

50. List all non-isomorphic trees on:

(a) 5 vertices.

(b) 6 vertices.

51. Find τ(G) for the following graphs G:

(a) Kn, with one edge removed.

(b) Km,n, with one edge removed.

52. Find τ(G) for the graphs G = (V,E), where:

(a)
V = {vij : 1 ≤ i ≤ n, 1 ≤ j ≤ 4},

E = {(vij, vi,j+1) : 1 ≤ i ≤ n, 1 ≤ j ≤ 4}

∪{(vi3, vi+1,1) : 1 ≤ i ≤ n}.
(Here i is to be understood modulo n and j modulo 4, so that
E includes, for example, (vn3, v11) and (v14, v11).)

(b)
V = {vij : 1 ≤ i ≤ n, 1 ≤ j ≤ 4},

E = {(vij, vi,j+1) : 1 ≤ i ≤ n, 1 ≤ j ≤ 4}

∪{(vi2, vi4) : 1 ≤ i ≤ n}

∪{(vi3, vi+1,1) : 1 ≤ i ≤ n}.

53. More generally than the preceding question, find τ(G) for a
graphG = (V,E), constructed out of n given graphsGi = (Vi, Ei), 1 ≤
i ≤ n (with pairwise disjoint Vi’s), as follows: V is made of the union
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of all Vi’s, and E is made of the union of all Ei’s, with one addi-
tional edge between Vi and Vi+1 for each i. (Your answer should be
in terms of the numbers τ(Gi).)

54. Find τ(G) for the following multi-graphs G:

(a) Kn, with two specific vertices having any number d of edges
between them.

(b) Km,n, with two specific vertices having any number d of edges
between them.

55. Given a (multi-)graph G and an integer k > 1, let G′ be the
multi-graph obtained from G by replacing each edge by k edges
between the same vertices. Express τ(G′) in terms of τ(G), the
parameters of G and k.

56. Given a graph G and an integer k > 1, let G′ be the graph
obtained from G by replacing each edge by a path of length k (where,
for each edge of G, we thus add k − 1 new vertices). Express τ(G′)
in terms of τ(G), the parameters of G and k.

57. Denote by τn the number of spanning trees of Pn � P2 for
n ≥ 1. Prove that the sequence (τn)∞n=1 satisfies the recurrence

τn = 4τn−1 − τn−2, n ≥ 3.

58. Denote by τn the number of spanning trees of Pn∨P1 for n ≥ 1.
Prove that the sequence (τn)∞n=1 satisfies the recurrence

τn = 3τn−1 − τn−2, n ≥ 3.

59. Provide an alternative proof of the formula for τ(Kmn), using
the eigenvalues of the matrix Q. (Hint: Start by finding a simple
lower bound for the dimension of the nullspace of Q − mI, and
similarly Q − nI, where you may want to distinguish between the
cases m = n and m 6= n. Use the fact that 0 is an eigenvalue of
Q for every graph, and finally use tr(Q) to find the last eignevalue
of Q.)

60. Find the number of spanning trees of the graph obtained from
Cn by adding a single edge. (Note that the answer depends on the
distance in Cn between the endpoints of the new edge.)

61.
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(a) Show that there exists a constant τ > 1 such that, for every
sufficiently large n, there exists a graph Gn with n vertices and
2n edges such that τ(Gn) > τn.

(b) Show that, for every ε > 0, there exists a graph Gn with n
vertices and 2n edges such that τ(Gn) < (1 + ε)n.
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