
Final #2

Mark the correct answer in each part of the following questions.

1. (a) Consider the following two versions of Nim:

• Nim-B: I, at his first move, instead of removing matches from
one of the heaps, adds a new heap with an arbitrary (positive)
number of matches.

• Nim-C: I, at his first move, instead of removing matches from
one of the heaps, adds a (positive) number of matches to an
arbitrary heap.

Next consider the following two claims.

Claim 1: For any initial position, I has a winning strategy in Nim-
B if and only if he has one in classical Nim.

Claim 2: For any initial position, I has a winning strategy in Nim-
C if and only if he has one in classical Nim.

(i) Both Claim 1 and Claim 2 are correct.

(ii) Only Claim 1 is correct.

(iii) Only Claim 2 is correct.

(iv) None of the claims is correct. Moreover, none is correct even
if we relax the “if and only if” to either “if” or “only if”.

(v) None of the above.

(b) Consider the following additional version of Nim:

• Nim-D: A positive integer M is given. In the beginning of the
game, II splits M between an arbitrary number of heaps, as
he wishes. Thereafter, the game continues as in the classical
version.

(i) For every sufficiently large M , II has a winning strategy.
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(ii) For every sufficiently large even M , II has a winning strategy.
Out of the odd M -s, he has a winning strategy for infinitely
many, but does not for infinitely many others.

(iii) For every sufficiently large odd M , II has a winning strategy.
Out of the even M -s, he has a winning strategy for infinitely
many, but does not for infinitely many others.

(iv) II has a winning strategy if and only if M is even.

(v) None of the above.

2. Let

A =

(
−1 0
0 1

)
be the payoff matrix of a two-person zero-sum game.

(a) The organizer of the tournament offers I to change A to(
−1 a
0 1

)
with some a > 0 for a suitable bribe, in such a way that II will be
unaware of the change until the tournament is over.

(i) I should not pay anything for this change.

(ii) I should not pay anything if a ≤ 1. For a > 1, he should pay
up to a certain amount which is independent of a.

(iii) I should not pay anything if a ≤ 1. For a > 1, he should pay
up to a certain amount which is monotonically increasing as
a function of a.

(iv) I should pay any amount less than 1/4.

(v) None of the above.

(b) The organizer of the tournament has retracted his offer. Instead,
he offers I to replace A by (

−1 0
b 1

)
with some b > 0. However, unlike his initial proposal, II will be
aware of this change in advance.
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(i) I should not pay anything for this change.

(ii) I should pay up to b for the change.

(iii) I should not pay anything if b ≤ 1. For b > 1, he should pay
up to 1+b

2
.

(iv) I should pay up to b if b ≤ 1, and up to 1 if b > 1.

(v) None of the above.

3. Let A be the payoff matrix of a two-person zero-sum game.

(i) If A is a square non-invertible matrix, then there exist vectors x,y,
such that xTA = 0 and Ay = 0. Therefore, the value of the game
is 0.

(ii) If A is of rank 1, then it has a saddle point.

(iii) If the sum of the rows of A is the zero vector, then the value of
the game is 0.

(iv) If the sum of the columns of A is the zero vector, then the value
of the game is at most 0.

(v) None of the above.

4. There are 2n + 1 people and 2n benches in a room. Of the benches, n
are upholstered and the other n are bare-wood. Each person chooses
a bench without knowing what the others have chosen. The utility of
a person sitting alone on an upholstered bench is 6, sitting alone on a
bare-wood bench – 5, sharing an upholstered bench – 4, and sharing a
bare-wood bench – 3.

(a) The number of Nash equilibria in pure strategies is:

(i) (2n + 1)!.

(ii)
(
2n+1
n

)
.

(iii) 2n
(
2n
n

)
.
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(iv)
n(2n + 1)!

2
.

(v) none of the above.

(b) Now we consider Nash equilibria in fully mixed strategies, in which
all people employ the same strategy. Moreover, each of them
selects each of the upholstered benches with the same probabil-
ity p1, and each of the others with the same probability p2. (Thus,
n · (p1 + p2) = 1.) The probabilities p1 and p2 satisfy the equation:

(i) (1 − p1)
2n − (1 − p2)

2n = 1/6.

(ii) (1 − p1)
2n − (1 − p2)

2n = 1/3.

(iii) (1 − p1)
2n − (1 − p2)

2n = 1/2.

(iv) (1 − p1)
2n − (1 − p2)

2n = 3/5.

(v) none of the above.

(c) Now suppose that one of the people is indifferent to the bench type
(i.e., his utilities are 6 if sitting alone and 4 if sharing a bench),
and that he has chosen a certain bare-wood bench and sat on it
before the others have chosen. Suppose the others are trying to
reach an equilibrium similar to that in the preceding part, taking
into account the choice made by that person.

(i) A player may never gain by revealing his strategy. In our
case, the person who sat first will lose due to it.

(ii) A player may never gain by revealing his strategy. In our
case, the person who sat first will neither gain nor lose due to
it.

(iii) A player may gain by revealing his strategy. For example, in
the game of chicken, if one of the drivers makes an action that
proves that he will not deviate from the path (by breaking the
wheel, say), he will gain by it. However, in our case the person
who sat first will not gain due to it.

(iv) A player may gain by revealing his strategy. For example, in
the game of chicken, if one of the drivers makes an action that
proves that he will not deviate from the path (by breaking
GTE wheel, say), he will gain by it. In our case also, the
person who sat first will gain due to it.

(v) None of the above.
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5. Consider the stable matchings problem for a group of n boys and n
girls.

(a) Recall that the data concerning an instance of the problem is given
by means of a matrix B, defining the preferences of the boys, and
a matrix G, defining the preferences of the girls. Here we would
like to find out what we can conclude, if at all, if we know only
one of the matrices.

(i) If we know only B, we cannot conclude anything about the
matching that will be obtained by the algorithm taught in
class. Namely, for every B, and for each of the n! possible
matchings, there exists a G for which the algorithm will pro-
duce this matching.

(ii) B does not determine in general which matching will be pro-
duced by the algorithm, but there exist matrices B that do
determine uniquely this matching.

(iii) B by itself can never tell us exactly how many steps the
algorithm will take.

(iv) G does not determine in general which matching will be
produced by the algorithm, but there exist matrices G that
do determine uniquely this matching.

(v) None of the above.

(b) Now suppose that the preferences are given by a matrix U =
(uij)

n
i,j=1, measuring compatibility of possible pairs. Due to a se-

curity breach, one of the girls is able to make certain changes in U .
We are interested in the possibilities of this girl to use it to her
advantage.

(i) If she can replace but one entry of U , whichever she chooses,
by any number she wants, she can make sure to be matched,
under the stable matching corresponding to the matrix, to the
boy at the top of her preference list.

(ii) If she can replace one column of U , whichever she chooses,
by any numbers she wants, she can make sure to be matched,
under the stable matching corresponding to the matrix, to the
boy at the top of her preference list. However, the preceding
claims are incorrect.
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(iii) If she can replace both a row and a column of U , whichever
she chooses, by any numbers she wants, she can make sure to
be matched, under the stable matching corresponding to the
matrix, to the boy at the top of her preference list. However,
the preceding claim is incorrect.

(iv) A change of a single entry of U can never change the stable
matching corresponding to the matrix.

(v) None of the above.

Solutions

1. (a) Consider Nim-B first. Suppose a position is winning for I in clas-
sical Nim. Then the Nim-sum of the heap sizes is non-zero. If
I adds a heap whose size is the Nim-sum of all heap sizes, the
new Nim-sum will be 0, so that II will be in a losing position. If,
however, the position is a losing position for I, then the Nim-sum
of the heap sizes is 0. Then, no matter what size the heap I adds
is, the Nim-sum will become non-zero, and II will have a winning
strategy. Hence, in Nim-B, a position is winning for I if and only
if it is winning for him in classical Nim, so that Claim 1 is correct.

In Nim-C, it is still the case that a position, in which I is to
lose in classical Nim, is losing. In fact, the Nim-sum of the heap
sizes is 0, and any change in one of the heaps, be it a subtraction
(as in classical Nim) or addition (as in Nim-C), makes the Nim-
sum non-zero, and therefore allows II to win. However, not every
position which is winning in classical Nim is such in Nim-C. For
example, any position with a single heap is a winning position for
I in classical Nim, but it clearly losing in Nim-C. Hence, Claim 2
is incorrect.

Thus, (ii) is true.
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(b) If M is even, then II wins by splitting the matches between two
heaps of size M/2 each. Indeed, the Nim-sum of two equal num-
bers is certainly 0.

On the other hand, if M is odd, then any splitting of the matches
has the property that there is an odd number of heaps of odd size.
Hence, the Nim-sum of the sizes must have a 1 at the lowest digit,
and in particular be non-zero. Hence, whatever II does, I will have
a winning strategy.

Thus, (iv) is true.

2. (a) Since II is unaware of the change, he will play as if the payoff
matrix is A. Since strategy 1 of II dominates strategy 2, he will
continue playing it. Hence, even after the change, I will have to
play his strategy 2, and the change is irrelevant for him.

Thus, (i) is true.

(b) For b > 0, strategy 2 of I dominates his strategy 1, so that he
will still play it. Hence, for b ≤ 1, player 2 will play his strategy
1, and I will get b instead of 0. For b > 1, player 2 will play his
strategy 1, and I will get 1 instead of 0. Thus, I should pay for
the change up to b if b ≤ 1, and up to 1 if b > 1.

Thus, (iv) is true.

3. Vectors x and y as in (i) indeed exist, but they may well not be prob-
ability vectors (or vectors with all entries of the same sign, so they can
be normalized to probability vectors). Indeed, if, say,

A =

(
1 1
−1 −1

)
, (1)

then the value of the game is clearly 1, even though A is non-invertible.
Consequently, (i) is false.

If

A =

(
1 −1
−1 1

)
,
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then A is of rank 1, yet has no saddle point, so that (ii) is false.

The row sum of the matrix in (1) is 0, yet the value of the game
is 1. (The condition does imply, though, that the value is at least 0,
analogously to the reasoning in the next paragraph.)

If the column sum of A is 0, then, employing all his pure strategies with
the same probability, II guarantees himself 0 on the average. (Note that
he may well have a better strategy that will guarantee more.)

Thus, (iv) is true.

4. (a) First note that, in a Nash equilibrium in pure strategies, all
benches are taken. Otherwise, any person who shares a bench
could have made better by switching to a vacant bench. Thus, all
benches are occupied by a single person, except for one, shared by
two people. Also, these two clearly share an upholstered bench.
Otherwise, it would be better for one of them to move to such a
bench. On the other hand, any way of seating two people on some
upholstered bench, and all others on separate benches, is clearly
an equilibrium. Hence the number of equilibria is(

2n + 1

2

)
· n · (2n− 1)! =

n(2n + 1)!

2
.

Thus, (iv) is true.

(b) If at some Nash equilibrium, some player’s strategy is fully mixed,
then all pure strategies are equally good for him, assuming all
other players stick to their strategies. In our case, if a person
selects an upholstered bench, he gets 6 if nobody else selects the
same bench, which happens with probability (1 − p1)

n, and 4 if
someone else does select it, which happens with probability 1 −
(1 − p1)

n. Hence, selecting an upholstered bench, he gets on the
average

6 · (1 − p1)
n + 4 · (1 − (1 − p1)

n).

Similarly, if he selects a bare-wood bench, he gets on the average

5 · (1 − p2)
n + 3 · (1 − (1 − p2)

n).
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The reasoning above yields:

6 · (1− p1)
n + 4 · (1− (1− p1)

n) = 5 · (1− p2)
n + 3 · (1− (1− p2)

n).

Simplifying the equations, we obtain

2 · (1 − p1)
n + 4 = 2 · (1 − p2)

n + 3,

so that
(1 − p1)

n − (1 − p2)
n = −1/2.

Thus, (v) is true.

(c) In the chicken game, if one of the drivers is certain that the other
will not deviate from the path, then he should deviate, as this
strategy gives him a much smaller loss than continuing on the
path. In our case, if a certain person sits on a bare-wood bench,
it makes no sense for other players to select that bench with a
positive probability. In fact, if anyone sits there, he will certainly
get 3, whereas if, say, he selects an upholstered bench, he guar-
antees himself at least 4. Hence, the person who sat first actually
guarantees that he gets 6.

Thus, (iv) is true.

5. (a) In general, B does not determine the matching produced by the al-
gorithm. For example, suppose that all rows of B are equal, which
is tantamount to saying that all boys have the exact same pref-
erences. By symmetry, it is clear that in this case all n! possible
matchings are possible outcomes of the algorithm. (To be more
specific, if some matching gives each girl the boy at the top of her
preference list, then the algorithm will produce this matching.)

However, for some matrices B, the matrix G is irrelevant to the
algorithm. This is the case if each boy has a different girl at the
top of his preference list. In fact, in this case, at the first stage,
each girl will get just one proposal, which she will therefore accept,
and the result will not take G into account. Notice also that the
algorithm will make just one step in this case. Moreover, this
situation shows also that G by itself never determines the result
of the algorithm.

Thus, (ii) is true.
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(b) Suppose that the girl in question changes the entry relating to
the compatibility of herself and the boy at the top of her list, so
that it will be larger than all other entries of both the row and the
column of this entry. We claim that they will be matched. In fact,
we know that, when the preferences are determined by a matrix U
of compatibility measures, there exists a unique stable matching.
Thus, we may consider the result of the algorithm taught in class.
According to the algorithm, that boy will propose to her at the
first stage, and, even if she gets more proposals at any point, she
will reject them and remain matched to him.

Thus, (i) is true.

10


