
Final #1

Mark the correct answer in each part of the following questions.

1. Consider the following 2-player game. We start with a given positive
integer n. I and II in turn replace the current number m by a divisor
m1 thereof, such that the ratio m/m1 is a prime or a prime power.
(For example, if n = 2100 · 310, then I may replace it by any of the 100
numbers 2k · 310 with 0 ≤ k ≤ 99, or by any of the 10 numbers 2100 · 3k
with 0 ≤ k ≤ 9. If I has replaced n by 230 · 310, II moved to 230 · 32, I
moved to 32, and II moved to 1, then II has won.)

(a) Denote by a the number of moves of I at his first turn, for which
he will be able to ensure a win in the game, if n = 2100 · 310, and
by b the analogous number for n = 280 · 390 · 5100.

(i) a = 1, b = 2.

(ii) a = 1, b = 3.

(iii) a = 2, b = 2.

(iv) a = 2, b = 3.

(v) None of the above.

(b) Let n1 and n2 be two positive integers, and consider the result of
the game when we start with n1 and when we start with n2. (We
assume that both I and II play optimally.)

(i) If I wins both games, then he wins also when starting with
n1n2.

(ii) The former claim is true if n1 and n2 are relatively prime,
but not in general.

(iii) If I loses both games, then he loses also when starting with
n1n2.
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(iv) The former claim is true if n1 and n2 are relatively prime,
but not in general.

(v) None of the above.

2. Let A = (aij)
m,n
i,j=1 be the payoff matrix of a two-person zero-sum game.

Let i0 be the index of a certain row and j0 the index of a certain column
of A. For every real number x, denote by V (x) the value of the game
obtained by replacing ai0j0 with x.

(i) V (x) −→
x→∞
∞.

(ii) The conclusion of (i) is true if and only if m = 1.

(iii) The conclusion of (i) is true if and only if n = 1.

(iv) The conclusion of (i) is true if and only if m = n = 1.

(v) None of the above.

3. Let A = ((−1)i+j(i − j))ni,j=1 be the payoff matrix of a two-person
zero-sum game.

(a) Suppose that n is odd. If II is a prophet (so that he knows what
I is going to play), and I is aware of it, then I should:

(i) Play just as he would have played against a regular player.

(ii) Play strategy 1.

(iii) Play strategy (n+ 1)/2.

(iv) Play strategy n.

(v) none of the above.

(b) The value of the game is:

(i) 0.

(ii) 1.

(iii) 1 + (−1)n−1

n
.
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(iv) 1 + (−1)n
n

.

(v) none of the above.

4. Recall that we proved that, if K is a convex and closed subset of Rd,
that does not include the 0 vector, then there exist a vector z ∈ Rd

and a number c > 0 for which

zTx > c, x ∈ K. (1)

(i) In fact, there exist an infinite set C of positive numbers and an
infinite set Z of vectors in Rd, such that (1) holds for every c ∈ C
and z ∈ Z.

(ii) In fact, there exists an infinite set C of positive numbers such that
(1) holds for every c ∈ C. However, the claim in (i) is false.

(iii) In fact, there exists an infinite set Z of vectors in Rd such that
(1) holds for every z ∈ Z. However, the claim in (i) is false.

(iv) None of the above.

5. Consider the following n-person game. Each player chooses an integer
between 1 and 2n. If a player has chosen i, then:

• If he is not the only one to have chosen i, he gets nothing.

• If he is the only one to have chosen i, and 1 ≤ i ≤ n, he gets 1.

• If he is the only one to have chosen i, and n + 1 ≤ i ≤ 2n, he
gets 2.

(a) The number of Nash equilibria in pure strategies is:

(i) n!.

(ii)
(
2n
n

)
.

(iii) (2n!
n!

.

(iv) (2n)!.
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(v) none of the above.

(b) Now consider Nash equilibria in fully mixed strategies, in which all
players employ the same strategy. Moreover, each of them chooses
all numbers between 1 and n with the same probability pn1, and
all numbers between n+ 1 and 2n with the same probability pn2.
(Thus, n · (pn1 + pn2) = 1.) Denote α = 21/(n−1).

(i) pn1 = (α−1)n
(α+1)n+α

.

(ii) pn1 = (α−1)n
n+α

.

(iii) pn1 = α−(α−1)n
(α+1)n

.

(iv) pn1 = α−(α−1)n
(α+1)n+α

.

(v) None of the above.

6. Consider the stable matchings problem. Suppose that the number n of
boys and of girls is even, and that the preferences are given by a matrix
U = (uij)

n
i,j=1 measuring compatibility of possible pairs. Suppose that

U has the following properties:

• uij increases as a function of j for each fixed i between 1 and n.

• uij increases as a function of i for each fixed j between 1 and n/2.

• uij decreases as a function of i for each fixed j between n/2 + 1
and n.

Suppose that, to find a stable matching, we run both the algorithm
presented in class (boys propose, girls reject) and the algorithm with
sexes reversed (girls propose, boys reject).

(a) Let T1 be the number of stages it takes the first algorithm to
produce a matching and T2 the number of stages it takes the
second algorithm.

(i) T1 = n/2, T2 = n/2.

(ii) T1 = n/2, T2 = n.

(iii) T1 = n, T2 = n/2.
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(iv) T1 = n, T2 = n.

(v) none of the above.

(b) The number of boys matched with the same girl under both algo-
rithms is:

(i) 1.

(ii) n/2.

(iii) n/2 + 1.

(iv) n.

(v) none of the above.
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Solutions

1. (a) The simplest is to realize that the game is equivalent to Nim, as
follows. Given as integer n, write its prime-power factorization

n = pe21 p
e2
2 . . . pekk .

(The primes pi are not necessarily ordered, but they are dis-
tinct.) Correspond to it a Nim instance with k heaps of sizes
e1, e2, . . . , ek. An allowed move in our game is to reduce one of
the ei-s, which corresponds to reducing the corresponding heap by
the same amount. It follows that I wins for n if and only if the
Nim-sum of the exponents e1, e2, . . . , ek is non-zero. Now:

10010 = 11001002,
1010 = 10102,
8010 = 10100002,
9010 = 10110102.

Clearly, for both n-s in the question, the Nim-sum of the exponents
is non-zero, so that I wins in both games. We know that, when I
wins in Nim, he may play any heap, the base-2 expansion of whose
size has a 1 at the highest digit where the Nim-sum is non-zero.
Moreover, there is only one winning move in each such heap. I
needs to reduce the heap so that its size will be the Nim-sum of
all other heap sizes. With the numbers above, we have therefore
a = 1 and b = 3.

Thus, (ii) is true.

(b) One can again use the equivalence with Nim, but we will solve
this part independently of that.

I wins for n1 = 2, as well as for n2 = 3 (which are relatively
prime), yet loses for n = n1n2 = 6. Hence (i) and (ii) are false.

I loses for n1 = 6, as well as for n2 = 10, yet for n = n1n2 = 60
(by passing to 15). Hence (iii) is false.

If I loses for both n1 and n2, and the numbers are relatively prime,
then II can win for n = n1n2 as follows. At each stage, the current
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number m can be written in a unique way in the form m = m1m2,
where m1 is a divisor of n1 and m2 a divisor of n2. II regards the
game, in a sense, as two games. When I plays, he replaces either
m1 or m2 by an appropriate divisor. II always replaces the number
changed by I, as he would when playing from that ni. Eventually,
he will be the player to make both m1 and m2 equal to 1.

Thus, (iv) is true.

2. If n > 1, and II plays any strategy but the j0-th, then I cannot win more
the maximum in the corresponding column of A, so that V is bounded
above. If n = 1, then II plays his only strategy, and I guarantees to get
x by playing his i0-th strategy. Hence, in this case, V (x) −→

x→∞
∞.

Thus, (iii) is true.

3. (a) Whichever row I chooses to play, II will choose the column that
attains the minimum in that row. Hence I needs to play the row
at which the minimum is maximal. Now it is easy to verify (using
the fact that n is odd) that the minimum in the first row is 1−n,
in the second and third it goes down to 3 − n, and in the next
two rows to 5 − n. This pattern continues until the middle row
– row (n + 1)/2. At the two rows just before it, the minimum is
(3−n)/2, and at the middle row it goes down to (1−n)/2. At this
point, the minimum starts decreasing. At the two following rows
it is again (3− n)/2, and so forth. Hence I should play (n+ 1)/2,
II should play either 1 or n, and I will lose (n− 1)/2.

Thus, (iii) is true.

(b) Since A is anti-symmetric, the value of the game is 0.

Thus, (i) is true.

4. Obviously, if (1) is satisfied for some z ∈ Rd and c > 0, then it satisfied
with z replaced by any λz with λ > 1 and c replaced by any c′ with
0 < c′ ≤ c. Hence (i) holds for the choices Z = {λz : λ > 1} and
C = {c′ : 0 < c′ ≤ c}.
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Thus, (i) is true.

5. (a) At any Nash equilibrium in pure strategies, it must be the case that
all players play distinct numbers between n + 1 and 2n. Indeed,
if any player does not, then at least one of the numbers in that
range has not been chosen by anyone else, so that this player could
have improved his gain by taking it. On the other hand, every
point as above is clearly a Nash equilibrium. Since the number of
possibilities of matching the numbers n+ 1, n+ 2, . . . , 2n with the
players is n!, this is the number of Nash equilibria.

Thus, (i) is true.

(b) At a Nash equilibrium point, each pure strategy employed by a
certain player with a positive probability has the property that, if
employed with certainty, it yields for him the same gain. In our
case, if a player deviates from the equilibrium strategy and plays 1
(or any other i up to n), he will get on the average 1 · (1−pn1)n−1,
while if he plays n + 1 his expected gain is 2 · (1 − pn2)

n−1. It
follows that:

1 · (1− pn1)n−1 = 2 · (1− pn2)n−1.

Hence
1− pn1
1− pn2

= α,

which yields

1− pn1 = α− α1− npn1
n

.

Routine calculations give:

pn1 =
α− (α− 1)n

(α + 1)n
.

Thus, (iii) is true.
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6. (a) The first property of U means that all boys have exactly the same
preferences. In such a case, the algorithm always takes n stages.
First, all boys propose to the first girl on their common list, and
all but one of them get rejected. Then all n − 1 remaining boys
propose to the second girl, and again all but one are rejected.
After n stages, we get to the final matching.

The two last properties mean that the first n/2 girls have the same
preferences, and so do the last n/2 of them. However, whereas the
girls in the first group have the first n/2 boys at the top half of
their list, the last /2 girls have the first n/2 boys at the top. It
follows that, in the first n/2 stages, the first girls will only propose
to the last boys, and the last girls to the first boys. Consequently,
by the end of stage n/2, all will be matched.

Thus, (iii) is true.

(b) We have proved that, when the preferences are determined by a
matrix of compatibility measures, there is a unique stable match-
ing. In particular, both algorithms match all n boys with the same
n girls.

Thus, (iv) is true.
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