
Quiz Section 11 - Cauchy Sequences and

Completeness

De�nition:
Let V be a normed space, {un}∞n=1 ⊂ V will be called a Cauchy sequence, if

for every ε > 0 exists n0 ∈ N such that for any m,n > n0 ‖um − un‖ < ε.

De�nition:
Let V be a normed space, V will be called complete if every Cauchy sequence

in V converges. A complete normed space is called a Banach space. A complete
inner-product space is called a Hilbert space.

Remark:
Do not confuse closedness and completeness. Closedness is a property a set

may have in relation to a containing set. That is, a subspace may be closed
even if not any Cauchy sequence converges, as long as any cauchy sequence
that converges in the containing set converges to a point in the contained set.
Completeness is a property that is independent of any containing set.

Prove/disprove the following:

1. Any convergent sequence is Cauchy.

Solution:
True. Let {un}∞n=1 ⊂ V be a converging sequence and let u ∈ V such that

un −−−−→
n→∞

u. Let ε > 0, since un −−−−→
n→∞

u, exists N ∈ N such that for n > N we

have ‖un − u‖ < ε
2 . Therefore for any m,n > N we have:

‖un − um‖ = ‖un − u+ u− um‖
≤ ‖un − u‖+ ‖u− um‖

<
ε

2
+
ε

2
= ε,

therefore {un}∞n=1 is a Cauchy sequence.

2. Any Cauchy sequence is bounded.
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Solution:
True. Let {un}∞n=1 ⊂ V be a Cauchy sequence (V is a normed space). Then

exists n0 ∈ N such that for any m,n ≥ n0 we have ‖um − un‖ < 1 and in
particular we have for any n ≥ n0 ‖un − un0

‖ < 1. Therefore for any n ≥ n0
we have:

‖un‖ = ‖un − un0
+ un0

‖
≤ ‖un − un0

‖+ ‖un0
‖

< 1 + ‖un0
‖ .

and we get that the sequence {un}∞n=1 is bounded by: max {‖u1‖ , . . . , ‖un0−1‖ , ‖un0
‖+ 1}.

3. If a Cauchy sequence {un}∞n=1 ⊂ V has a converging subsequence, then
{un}∞n=1 converges as well.

Solution:
True. Assume {unk

}∞k=1 is a converging subsequence of {un}∞n=1. Let ε > 0.
Since {un}∞n=1 is a cauchy sequence, exists N ∈ N such that for anym,n ≥ N we
have ‖un − um‖ < ε

2 . Denote u = limk→∞ unk
. Since the subsequence converges

to u, exists some k0 such that nk0
> N and

∥∥unk0
− u
∥∥ < ε

2 . Therefore, for
every n > nk0

we have:

‖un − u‖ =
∥∥un − unk0

+ unk0
− u
∥∥

≤
∥∥un − unk0

∥∥+ ∥∥unk0
− u
∥∥

<
ε

2
+
ε

2
= ε,

which implies that the entire sequence converges to u.

4. C [−1, 1] with ‖·‖1 is complete.

Solution:
False. There are sequences of continuous functions which converge in ‖·‖1

to functions which are not continuous, an example is:

fn (x) =


0,

n
(
x+ 1

n

)
,

1,

−1 ≤ x < − 1
n ,

− 1
n ≤ x < 0,

0 ≤ x ≤ 1.

It can be easily veri�ed that this is a Cauchy sequence, but the sequence does
not converge to a continuous function, hence the given space is not complete.

5. C [−1, 1] with ‖·‖2 is complete.
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Solution:
False. Can be disproved with the same example we used for ‖·‖1.

6. C [−1, 1] with ‖·‖∞ is complete.

Solution:
True. It has been proved in class. The idea of the proof is if fn is a Cauchy

sequence, then for each x, fn (x) is a cauchy sequence of numbers and therefore
converges, so fn converges pointwise to some functions. Since the functions in
the sequence are continuous and the convergence is uniform, the limit function
must be continuous as well.

7. Let V be a Banach space, and let {un}∞n=1 ⊂ V such that
∑∞

n=1 ‖un‖ <
∞, then exists u ∈ V such that u =

∑∞
n=1 un.

Solution:
True. Construct a new sequence vn =

∑n
i=1 un. Let ε > 0, since

∑∞
n=1 ‖un‖ <

∞, exists N ∈ N such that
∑∞

n=N ‖un‖ < ε. Let m,n > N and assume without
loss of generality that m > n (if m = n then ‖vm − vn‖ = 0 < ε). We have:

‖vm − vn‖ =

∥∥∥∥∥
m∑

k=n+1

uk

∥∥∥∥∥
≤

m∑
k=n+1

‖uk‖

≤
∞∑

k=N

‖uk‖

< ε.

Therefore {vn}∞n=1 is a Cauchy sequence. since V is a Banach space, the se-
quence converges, and the limit is

∑∞
n=1 un.

8. Let V be a normed space, for every r > 0 and u ∈ V denote Br (u) =
{v ∈ V : ‖u− v‖ ≤ r}. If V is not complete, then for every r > 0 and every
u ∈ V , Br (u) contains a non-converging Cauchy sequence.

Solution:
True. This means that if there are some holes in the space, then there are

holes everywhere. The idea of the proof is that we can take a non-converging
Cauchy sequence and move it inside a ball where every Cauchy sequence con-
verges, �nd the limit there and then move it back. Here are the details: Let
V be an incomplete normed space. Assume in negation that for some x ∈ V
and r > 0, Br (x) does not contain any non-converging Cauchy sequences. V
is not complete, therefore exists a Cauchy sequence {un}∞n=1 ⊂ V which does
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not converge. Since {un}∞n=1 is Cauchy, exists n0 such that for n ≥ n0 we have
‖un − un0

‖ < r. We de�ne a new sequence: vn = un − un0
+ x. Note that for

n > n0 we have:

‖vn − x‖ = ‖un − un0
+ x− x‖

= ‖un − un0
‖

< r.

Therefore, for n > n0 we have vn ∈ Br (x). It is also easy to verify that
vn is a Cauchy sequence. The fact that perhaps v1, . . . vn0−1 /∈ Br (x) will
not bother us since we can omit these elements from vn without changing the
convergence property. vn is a Cauchy sequence which is contained (aside from
a �nite number of elements) in Br (x), therefore it converges, and we denote
v = limn→∞ vn. We now want to show that limn→∞ un = v− x+ un0 = u. Let
ε > 0 , v = limn→∞ vn, therefore exists N such that for n > N ‖vn − v‖ < ε.
Therefore, for n > N :

‖un − u‖ = ‖vn + un0
− x− (v − x+ un0

)‖
= ‖vn − v‖
< ε.

Therefore un converges, in contradiction to the assumption.

9. Let V be a normed space such that every series that is absolutely
convergent is convergent (this means that for any sequence {un}∞n=1 ⊂ V ,∑∞

n=1 ‖un‖ < ∞ implies that limN→∞
∑N

n=1 un exists). Then V is a Banach
space.

Solution:
True. We need to prove that every Cauchy sequence in V converges. Let

{vn}∞n=1 ⊂ V be a Cauchy sequence. It is su�cient to show that {vn}∞n=1 has a
converging subsequence {vnk

}∞k=1. We de�ne a new sequence recursively. Since
{vn}∞n=1 is Cauchy, we can de�ne n1 such that for any n > n1, ‖vn − vn1

‖ < 1
2 .

We de�ne the �rst element of the subsequence to be vn1
. Assume we already

de�ned n1, . . . nk−1. We choose nk ∈ N to be some number nk > nk−1 such
that for any n > nk we have ‖vn − vnk

‖ < 1
2−k . We want to prove that this

subsequence converges. We de�ne a new sequence, u1 = vn1 , and for k > 1
uk = vnk

− vnk−1
.

4



∞∑
k=1

‖uk‖ = ‖vn1
‖+

∞∑
k=2

∥∥vnk
− vnk−1

∥∥
≤
∗
‖vn1
‖+

∞∑
k=2

1

2−k−1

= ‖vn1
‖+

∞∑
k=1

1

2−k

= ‖vn1
‖+ 1

< ∞.

Therefore
∑∞

n=1 un converges. Since
∑k

j=1 uj = vnk
, we have that {vnk

}∞k=1

also converges. So {vn}∞n=1 is a Cauchy sequence with a converging subsequence,
and therfore converges, hence V is Banach.

10. Let V be the space of sequences with a �nite number of non-zero coor-

dinates with the norm ‖x‖ =
√∑∞

n=1 |xi|
2
. Then V is complete.

Solution:

False. For example consider the sequence u(n) de�ned by
(
u(n)

)
i
=

{
1
k ,

0,

k ≤ n,
k > n.

.

u(1) = (1, 0, 0 . . .), u(2) =
(
1. 12 , 0, 0 . . .

)
, u(3) =

(
1, 12 ,

1
3 , 0, 0, . . .

)
and so on. We

�rst verify that this is indeed a Cauchy sequence. Let N ∈ N and m,n > N .
Assume without loss of generality m > n.

∥∥∥u(m) − u(n)
∥∥∥ =

√√√√ m∑
k=n+1

1

k2

≤

√√√√ ∞∑
k=N

1

k2

−−−−→
N→∞

0.

But it is clear that u(n) cannot converge to any vector with �nite number of
non-zero coordinates, therefore V is not complete.

11. L1
C (R) is complete.

Solution:
False. We can construct an example very similar to part (3):
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fn (x) =


0,

n
(
x+ 1

n

)
,

e−x,

x < − 1
n ,

− 1
n ≤ x < 0,

0 ≤ x.

It is easy to very that this is a Cauchy sequence which converges to a function
which is not continuous at x = 0.

12. L2
C (R) is complete.

Solution:
False. We can utilize our example from the previous part.

13. L∞C (R) is complete.

Solution:
True. The proof is similar to the proof of (5).

14. l1 is complete.

Solution:
True. It is enough to prove that every absolutely convergent series converges.

Let
{
u(n)

}∞
n=1

⊂ l1 be a sequence such that
∑∞

n=1

∥∥u(n)∥∥ < ∞. We denote

by u
(n)
i the i'th element of the n'th. For each i we have

∣∣∣u(n)i

∣∣∣ ≤ ∥∥u(n)∥∥,
therefore

∑∞
n=1

∣∣∣u(n)i

∣∣∣ < ∞ and we de�ne a new sequence of complex numbers

v by vi =
∑∞

n=1 u
(n)
i . C is complete, the series de�ning each element of v is

absolutely convergent, therefore convergent, and the sequence is well de�ned.
We need to prove that v ∈ l1 and that v =

∑∞
n=1 u

(n). First we show that
v ∈ l1, recall that l1 is the space of absolutely summable sequences of complex
numbers.
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∞∑
i=1

|vi| = lim
K→∞

K∑
i=1

|vi|

= lim
K→∞

K∑
i=1

∣∣∣∣∣
∞∑

n=1

u
(n)
i

∣∣∣∣∣
= lim

N,K→∞

K∑
i=1

∣∣∣∣∣
N∑

n=1

u
(n)
i

∣∣∣∣∣
≤ lim

N,K→∞

K∑
i=1

N∑
n=1

∣∣∣u(n)i

∣∣∣
= lim

N,K→∞

N∑
n=1

K∑
i=1

∣∣∣u(n)i

∣∣∣
≤ lim

N,K→∞

N∑
n=1

∞∑
i=1

∣∣∣u(n)i

∣∣∣
= lim

N→∞

N∑
n=1

∞∑
i=1

∣∣∣u(n)i

∣∣∣
= lim

N→∞

N∑
n=1

∥∥∥u(n)∥∥∥
=

∞∑
n=1

∥∥∥u(n)∥∥∥
< ∞

Therefore v ∈ l1. We need to show that v =
∑∞

n=1 u
(n).
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∥∥∥∥∥v −
N∑

n=1

u(n)

∥∥∥∥∥ =

∞∑
i=1

∣∣∣∣∣vi −
N∑

n=1

u
(n)
i

∣∣∣∣∣
=

∞∑
i=1

∣∣∣∣∣
∞∑

n=N+1

u
(n)
i

∣∣∣∣∣
≤

∞∑
i=1

∞∑
n=N+1

∣∣∣u(n)i

∣∣∣
=

∞∑
n=N+1

∞∑
i=1

∣∣∣u(n)i

∣∣∣
=

∞∑
n=N+1

∥∥∥u(n)∥∥∥
−−−−→
N→∞

0.

In summary, we wanted to show that l1 is complete, from a previous section,
we know that it su�ces to show that any absolutely convergent series is con-
vergent, so we took an arbitrary absolutely convergent series and showed that
it converges to a vector in l1, hence l1 is complete.

15. l2 is complete.

Solution:
True. See the proof for l1.

16. l∞ is complete.

Solution:
True. See the proof for l2.

17. Let V be a Banach space,W ⊂ V a closed subspace, thenW is complete.

Solution:
True. Let {un}∞n=1 ⊂ W be a Cauchy sequence. {un}∞n=1 is also a Cauchy

sequence in V . Since V is complete, exists u ∈ V such that un −−−−→
n→∞

u. Now,

since W is closed, u ∈W . This proves that W is complete.

18. Let V be a Banach space, W ⊂ V a subspace, if W is complete then W
is closed.

Solution:
True. Let {un}∞n=1 ⊂W be a sequence that converges to some vector u ∈ V .

The sequence converges in V therefore it is Cauchy. Since W is complete and
{un}∞n=1 is Cauchy, it converges to a limit in W and therefore W is closed
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19. Let V be the space of piecewise constant functions from [0, 1] to C. Then
V is complete.

Solution:
False. We have already seen that any function in L2

PC [0, 1] can be approx-
imated arbitrarily closely by piecewise constant functions. Therefore the space
of piecewise constant functions is not closed in L2

PC [0, 1] (because its closure is
L2
PC [0, 1]). This means we can construct a sequence of functions in V which

converges to a function in L2
PC [0, 1] \ V , the sequence will be Cauchy (since

it converges in L2
PC [0, 1]), but it will not converge in V . Therefore V is not

complete.
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