
Review Questions

Mark the correct answer in each of the following questions.

1. Let V be a vector space and ‖·‖ a norm on V . Define (for the sake of this
question only) a set of vectors {vn}∞n=1 as generating if for every vector
v ∈ V and ε > 0 there exist a positive integer n and complex numbers
α1, α2, . . . , αn such that ‖v − (α1v1 + α2v2 + . . .+ αnvn)‖ < ε.

Now consider the space L2
PC[0, 1] with the ‖ · ‖1-norm, the ‖ · ‖2-norm,

and the ‖ · ‖∞-norm. Let Q′ be the set of rational numbers in [0, 1].
For a, b ∈ Q′ with a ≤ b, denote by 1[a,b] the indicator function of [a, b]
(which is 1 on [a, b] and 0 outside). Consider the system {1[a,b] : a, b ∈
Q′, a ≤ b}.

(a) The system is orthogonal but not orthonormal.

(b) The system is generating with respect to the ‖ · ‖2-norm.

(c) The system is not generating with respect to the ‖ · ‖1-norm.

(d) The system is generating with respect to the ‖ · ‖∞-norm.

(e) None of the above.

2. Let (fn)∞n=1 and f be continuous functions from R to R, all belonging
to L1

PC(−∞,∞) ∩ L2
PC(−∞,∞).

(a) If fn −→
n→∞

f uniformly on R, then the same holds in ‖ · ‖2.

(b) If fn −→
n→∞

f in ‖ · ‖2, then the same holds uniformly.

(c) Suppose |f(x)| ≤ 1 for every x ∈ R and |fn(x)| ≤ 1 for every
1 ≤ n <∞ and x ∈ R. If fn −→

n→∞
f in ‖ · ‖2, then the same holds

in ‖ · ‖1.
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(d) Suppose |f(x)| ≤ 1 for every x ∈ R and |fn(x)| ≤ 1 for every
1 ≤ n <∞ and x ∈ R. If fn −→

n→∞
f in ‖ · ‖1, then the same holds

in ‖ · ‖2.
(e) None of the above.

3. Let f be the function given by:

f(x) = e−x
2 ·
∫ x

−∞
e−t

2

dt, −∞ < x <∞,

and let y = f̂ . Then the function y satisfies the differential equation:

(a)

y′ +
ω

2
y =

i

4
√

2π
e−ω

2/8.

(b)

y′ +
ω

2
y =

i

8
√

2π
e−ω

2/8.

(c)

y′ +
ω

2
y =

i

12
√

2π
e−ω

2/8.

(d)

y′ +
ω

2
y =

i

16
√

2π
e−ω

2/8.

(e) None of the above.

4. Consider the reasoning and obviously false conclusion of the following
paragraph.

In class we have found that the Fourier transform of the function f ,
defined by

f(x) = e−|x|, x ∈ R,
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is given by:

f̂(ω) =
1

π(ω2 + 1)
, ω ∈ R.

Now f actually coincides with e−x on (0,∞) and with ex on (−∞, 0).
Hence f is piecewise differentiable of every order (the only problematic
point being 0, where f “switches” from ex to e−x). Also, f ′′ is identical
to f , except for the point 0, where f ′′ is undefined. Employing the
rules for transforms, we find that

f̂ ′′(ω) = (iω)2f̂(ω) = −ω2f̂(ω). (1)

It follows that
f̂(ω) = f̂ ′′(ω) = −ω2f̂(ω),

which implies (
ω2 + 1

)
f̂(ω) = 0,

so that f̂ is identically 0, and hence so is f itself.

The error in the reasoning is:

(a) The function f is not twice differentiable at 0.

(b) The function f ′′ does not belong to L1
PC(−∞,∞).

(c) To use the rule in (1), the function f has to be continuously dif-
ferentiable, not just piecewise continuously differentiable.

(d) The transform of a function tends to 0 as the argument tends to
±∞. In our case, we had to check that the function (iω)2f̂(ω)
satisfies this condition before we could use the rule.

(e) None of the above.

5. Consider the sequence (fn)∞n=1 of functions from R to itself, defined by:

fn = 1[−1,1] −
1

2
· 1[−2,2] + . . .+

(−1)n−1

n
· 1[−n,n], n = 1, 2, . . . .

Let f̂n be the Fourier transform of fn for each n.
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(a) The sequence of numbers (f̂n(1/2)) is the sequence of partial sums
of a conditionally convergent series. Hence the sequence of func-
tions (f̂n) does not converge uniformly on the interval [1/2 −
δ, 1/2 + δ] for any δ > 0.

(b) If ω = mπ, where π is a non-zero integer, then the sequence of

numbers (f̂n(ω)) is identically 0, and in particular it converges to
0. However, the sequence converges for no other value of ω.

(c) The sequence of functions (f̂n) converges on the interval [1/2, π/2],
but not uniformly.

(d) The sequence of functions (f̂n) converges uniformly on the interval
[δ, π − δ] for every δ > 0.

(e) None of the above.

6. Let [·] denote the integer part function, defined by:

[x] = m, m ≤ x < m+ 1, m ∈ Z.

(For example, [5] = [5.99] = 5, [−5.01] = −6.) Define the function f
by:

f(x) =

{
e−[x], x ≥ 0,
0, x < 0.

(a) We have f̂ ∈ L2
PC(−∞,∞) and

f̂(π) =
e

iπ2(e+ 1)
.

(b) We have f̂ ∈ L2
PC(−∞,∞) and

f̂(π) =
e

iπ(e+ 1)
.

(c) We have f̂ /∈ L2
PC(−∞,∞) and

f̂(π) =
e

iπ2(e+ 1)
.
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(d) We have f̂ /∈ L2
PC(−∞,∞) and

f̂(π) =
e

iπ(e+ 1)
.

(e) None of the above.

7. We proved in class that the Fourier series of a piecewise continuously
differentiable function converges uniformly to the function away from
the discontinuities; moreover, at the discontinuities the series converges
to the average of the one-sided limits of the function. Recall that the
first part of the proof was devoted to show that the above holds for the
specific function φ, defined by φ(x) = x for π ≤ x < π.

(a) If, instead of proving the theorem first for φ, we prove it for some
other non-zero function ψ ∈ L2

PC(−π, π), then the second part of
the proof still works as before.

(b) The previous claim is false. However, if, instead of proving the
theorem first for φ, we prove it for some non-zero piecewise con-
tinuously differentiable function ψ, with exactly one discontinuity
in [−π, π], whether a removable discontinuity or a jump disconti-
nuity, then the second part of the proof still works as before.

(c) The previous claims are false. However, if, instead of proving
the theorem first for φ, we prove it for some non-zero piecewise
continuously differentiable function ψ, with exactly one jump dis-
continuity in [−π, π], then the second part of the proof still works
as before.

(d) The previous claims are false. However, if, instead of proving the
theorem first for φ, we prove it for some non-zero continuously
differentiable function ψ, then the second part of the proof still
works as before.

(e) None of the above.

Remark: We consider a function f as continuous at π if and only if
f(−π) = f(−π+) = f(π−) = f(π). If it is not, we count the points
−π and π as a single discontinuity.

5



Solutions

1. The product of two functions 1[a,b] and 1[a′,b′] from our system is the
indicator function of the intersection of the two intervals. It follows
easily that the functions are orthogonal if and only if the underlying
intervals do not intersect.

The subspace of the space of all piecewise continuous functions, spanned
by all indicator functions, is that of piecewise constant functions. We
have seen that every piecewise continuous function can be uniformly
approximated by piecewise constant functions, and in particular can
be arbitrarily well approximated in ‖ · ‖2-norm and in ‖ · ‖1-norm.

In our case, since we start with indicator functions of intervals with
rational endpoints only, we get by using linear combinations only piece-
wise constant functions that change from one value to another at ra-
tional points. This does not affect approximation in ‖ · ‖2-norm and
in ‖ · ‖1-norm. Indeed, consider the two functions

∑k
j=1 αj1[aj ,bj ] and∑k

j=1 αj1[a′j ,b
′
j ]

. If all the aj and bj are close to the corresponding a′j and

b′j, then the two functions are close in ‖ · ‖2-norm and in ‖ · ‖1-norm.
Since every point in [0, 1] can be approximated arbitrarily well by a
rational point, linear combinations of indicator functions of intervals
with rational endpoints can approximate arbitrarily well any piecewise
continuous function in ‖ · ‖2-norm and in ‖ · ‖1-norm.

However, this is not the case with uniform approximation. For exam-
ple, take the function f = 1[0,s], where s ∈ [0, 1] −Q′. We claim that

any function g of the form
∑k

j=1 αj1[aj ,bj ] with rational aj and bj is at
a distance of at least 1/2 from f in ‖ · ‖∞-norm. In fact, let c be the
largest number in {a1, b1, a2, b2, . . . , ak, bk} that is smaller than s, and
d the smallest number in the same set that is larger than s. (Here
c = 0 if no number in the set is smaller than s, and d = 1 in the
analogous situation to the right of s.) Hence, g is constant on [c, d],
while f assumes both the values 0 and 1. It follows that ‖f−g‖∞ ≥ 1/2.

Thus, (b) is true.
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2. To disprove (a), we construct (fn)∞n=1 as follows. We let fn vanish
outside [−n2, n2]. Next we take fn(n2) = fn(−n2) = 0 and fn(0) = 1/n,
and let fn vary linearly on [−n2, 0] and on [0, n2]. Clearly,

‖fn − 0‖∞ = sup
x∈R
|fn(x)| = 1/n −→

n→∞
0,

so that fn converges uniformly to 0 as n→∞. On the other hand,∫ ∞
−∞
|fn(x)− 0|2dx = 2

∫ n2

0

(
1

n
− 1

n2
x

)2

dx =
2

3
,

so that fn does not converge to 0 in ‖ · ‖2.
To disprove (b), we take fn to vanish outside [n, n + 2/n], assume the
value 1 at the point n + 1/n, and vary linearly on [n, n + 1/n] and on
[n+ 1/n, n+ 2/n]. Then∫ ∞
−∞
|fn(x)−0|2dx = 2

∫ n+1/n

n

(n(x− n))2 dx = 2

∫ 1/n

0

(nx)2 dx =
2

3n
−→
n→∞

0,

so that fn converges to 0 in ‖ · ‖2 as n → ∞. On the other hand, we
clearly have ‖fn − 0‖∞ = 1 for each n, namely fn does not converge
uniformly to 0. Note that∫ ∞

−∞
|fn(x)− 0|dx = 2

∫ 1/n

0

nxdx = 1,

which means that fn does not converge to 0 in ‖ · ‖1 either, and thus
disproves (d) as well.

To disprove (c), take fn vanish outside [−n, n], let fn(n) = fn(−n) = 0
and fn(0) = 1/n, and let fn vary linearly on [−n, 0] and on [0, n]. One
checks easily that fn converges to 0 in ‖ · ‖2, but not in ‖ · ‖1.
Under the conditions of (d), we have |fn(x)−f(x)| ≤ 2 for every n and
x, and therefore∫ ∞

−∞
|fn(x)− f(x)|2dx ≤ 2

∫ ∞
−∞
|fn(x)− f(x)|dx,

so that the convergence fn −→
n→∞

f in ‖ · ‖1 implies the same convergence

in ‖ · ‖2.
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Thus, (d) is true.

3. The second factor in the product defining f is bounded by
∫∞
−∞ e

−t2dt,

and hence f ∈ L1
PC. Differentiating by sides the equality, we obtain:

f ′(x) = e−x
2 · (−2x) ·

∫ x

−∞
e−t

2

dt+ e−x
2 · e−x2 = −2xf(x) + e−2x

2

. (2)

According to the rules for calculating Fourier transforms,

̂−2xf(x)(ω) = −2if̂ ′(ω).

Defining g and h by g(x) = e−x
2/2 and h(x) = e−2x

2
, we note that

h(x) = g(2x), and therefore

ĥ(ω) =
1

2
ĝ(ω/2) =

1

2
· 1√

2π
e−(ω/2)

2/2 =
1

2
√

2π
e−ω

2/8.

Passing to Fourier transforms in (2), we arrive at

iωf̂(ω) = −2if̂ ′(ω) +
1

2
√

2π
e−ω

2/8,

which yields after simplification:

f̂ ′(ω) +
ω

2
y = − i

4
√

2π
e−ω

2/8.

Thus, (e) is true.

4. To prove the rule for f̂ ′(ω), we required that f be continuous. In
our example, we have used it twice, so that actually f ′ needs to be
continuous as well, namely f has to be continuously differentiable (and
its derivative needs to be piecewise differentiable). It is not required
that f be twice differentiable.
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The function f ′′, being the same as f (except at 0), certainly belongs
to L1

PC(−∞,∞).

It is true that the transform of a function tends to 0 as the argument
tends to ±∞, so that if our reasoning was valid then (iω)2f̂(ω) would
have to satisfy this condition. However, the condition follows from the
conditions on f itself, and does not need to be checked.

Thus, (c) is true.

5. We have shown in class that, if f = 1[−b,b], then

f̂(ω) =
sinωb

πω
.

It follows by the linearity of the transform that in our case:

f̂n(ω) =
n∑
k=1

(−1)k−1
sin kω

πkω
=

1

2πω

n∑
k=1

2 · (−1)k−1
sin kω

k
. (3)

The sum on the right-hand side is exactly the partial sum Sn of the
Fourier series of the identity function g(x) = x (in our case, written
with the argument ω). We have shown that the partial sums converge
uniformly to g on [−π + δ, π − δ] for every δ > 0.

In our case, on the right-hand side of (3) we have an extra factor of
1

2πω
. This factor is bounded above by 1

2πδ
on [δ, π − δ], which implies

that f̂n converges uniformly on this interval.

Thus, (d) is true.
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6. First we calculate f̂ :

f̂(ω) = 1
2π

∫∞
−∞ f(x)e−iωxdx

= 1
2π

∫∞
0
e−[x]e−iωxdx

= 1
2π

∑∞
n=0 e

−(n+iωn) ∫ n+1

n
e−iω(x−n)dx

= 1
2π

∑∞
n=0 e

−(1+iω)n ∫ 1

0
e−iωxdx

= 1
2π

1
1−e−(1+iω)

1−e−iω

iω

= 1
2πiω

1−e−iω

1−e−(1+iω) .

(Note that, in fact, the replacement of the integral over [0,∞) by the
infinite sum of integrals over all intervals [n, n+ 1] requires a justifica-
tion. The integral over [0,∞) is the limit of the integral over [0, t] as
t→∞, whereas our sum is the same limit as t→∞ over integers only.
If the integrand does not go to 0 as the argument goes to ∞, we may
have problems; for example, consider

∫∞
0

(x− [x]− 1/2)dx. In our case
the integrand goes to 0, so the replacement is correct.)

In particular:

f̂(π) =
1

2πiπ

1− (−1)

1 + e−1
=

e

iπ2(e+ 1)
.

Since ∣∣1− e−(1+iω)∣∣ ≥ 1− e−1, ω ∈ R,

we have |f̂(ω)| < C
|ω| for some C > 0 and all sufficiently large |ω|, and

therefore f̂ ∈ L2
PC(−∞,∞).

Thus, (a) is true.

7. The contribution of the first part of the proof is that it lets you “re-
move” the discontinuities of the given function f . Since the function
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φ has exactly one discontinuity, which is a jump, we can remove one
discontinuity of f by adding to it an appropriate scalar multiple of
an appropriate shift of φ, without introducing new discontinuities in
the process. Hence, any piecewise continuously differentiable function,
with exactly one jump discontinuity in [−π, π], would do instead of φ
(if we could indeed prove the theorem for that function).

A ψ with more than one discontinuity would fail in general, as while
fixing one discontinuity, it would create others. A ψ with a removable
discontinuity (same as a continuous ψ) would not help either, as it
could not be used to remove discontinuities of f .

Thus, (c) is true.

11


