Review Questions

Mark the correct answer in each part of the following questions.

1. Consider the space $V=C[0,1]$ with the inner product $\langle\cdot, \cdot\rangle$ given by

$$
\langle f, g\rangle=\int_{0}^{1} f(x) \overline{g(x)} d x
$$

Let f be the vector defined by $f(x)=\frac{1}{2+x}$ for $x \in[0,1]$ and $W=$ $\operatorname{span}\{g\}$, where g is the vector defined by $g(x)=\frac{1}{1+x}$ for $x \in[0,1]$. Let d be the distance between the vector f and the vector $w^{*} \in W$ which is the closest to it within W. Then $d=$
(a) $\sqrt{\log 2}$.
(b) $\sqrt{1-\log (e-1)}$.
(c) $\sqrt{\frac{1}{6}-2 \log ^{2} \frac{4}{3}}$.
(d) $\sqrt{\frac{1}{3}-\sin ^{2} \frac{\pi}{12}}$.
(e) None of the above.
2. A function $f \in L_{\mathrm{PC}}^{2}[-\pi, \pi]$ is given. It is known that $\|f\|=3$. Let

$$
\sum_{n=-\infty}^{\infty} c_{n} e^{i n x}
$$

be the Fourier series of f. For $n=1,2,3, \ldots$, consider the following functions on $[-\pi, \pi]$:

$$
g_{n}(x)=\sum_{k=0}^{n} c_{k} e^{i k x}, \quad h_{n}(x)=\sum_{k=1}^{n} c_{-k} e^{-i k x} .
$$

Denote:

$$
r_{n}=\left\|g_{n}\right\| \cdot\left\|h_{n}\right\|, \quad n=1,2,3, \ldots .
$$

(a) $\lim _{n \rightarrow \infty} r_{n}=0$.
(b) $\lim _{n \rightarrow \infty} r_{n} \leq 3$. Moreover, the bound 3 is the best possible, namely for every $\delta>0$ we can find an f as above with $\lim _{n \rightarrow \infty} r_{n}>3-\delta$.
(c) $\lim _{n \rightarrow \infty} r_{n} \leq 9 / 2$. Moreover, the bound $9 / 2$ is the best possible, namely for every $\delta>0$ we can find an f as above with $\lim _{n \rightarrow \infty} r_{n}>$ $9 / 2-\delta$.
(d) $\lim _{n \rightarrow \infty} r_{n} \leq 9$. Moreover, the bound 9 is the best possible, namely for every $\delta>0$ we can find an f as above with $\lim _{n \rightarrow \infty} r_{n}>9-\delta$.
(e) None of the above.
3. Let V be an inner product space, $\left\{e_{n}\right\}_{n=1}^{\infty}$ an orthonormal system in V and $v \in V$. It is known that for two sequences $\left(\alpha_{n}\right)_{n=1}^{\infty}$ and $\left(\beta_{n}\right)_{n=1}^{\infty}$ of complex numbers we have:

$$
v=\sum_{n=1}^{\infty} \alpha_{n} e_{n}=\sum_{n=1}^{\infty} \beta_{n} e_{n}
$$

(a) We necessarily have $\sum_{n=1}^{\infty}\left|\alpha_{n}\right|^{2}=\sum_{n=1}^{\infty}\left|\beta_{n}\right|^{2}$, but not necessarily $\sum_{n=1}^{\infty} \alpha_{n}^{2}=\sum_{n=1}^{\infty} \beta_{n}^{2}$.
(b) We necessarily have $\sum_{n=1}^{\infty} \alpha_{n}^{2}=\sum_{n=1}^{\infty} \beta_{n}^{2}$, but not necessarily $\left|\alpha_{n}\right|=\left|\beta_{n}\right|$ for each n.
(c) We necessarily have $\left|\alpha_{n}\right|=\left|\beta_{n}\right|$ for each n, but not necessarily $\alpha_{n}=\beta_{n}$ for each n.
(d) We necessarily have $\alpha_{n}=\beta_{n}$ for each n.
(e) None of the above.
4. Consider the sequence $\left(f_{n}\right)_{n=1}^{\infty}$ in $C[-1,1]$, given by:

$$
f_{n}(x)= \begin{cases}n^{2 / 3}\left(1-n^{2} x^{2}\right), & |x| \leq 1 / n \\ 0, & \text { otherwise }\end{cases}
$$

(a) The sequence converges to 0 in $\|\cdot\|_{\infty}$.
(b) The sequence converges to 0 pointwise, in $\|\cdot\|_{1}$, and in $\|\cdot\|_{2}$, but not in $\|\cdot\|_{\infty}$.
(c) The sequence converges to 0 in $\|\cdot\|_{1}$ and in $\|\cdot\|_{2}$, but neither pointwise nor in $\|\cdot\|_{\infty}$.
(d) The sequence converges to 0 in $\|\cdot\|_{1}$, but neither pointwise nor in $\|\cdot\|_{2}$.
(e) None of the above.
5. We expand the function $f(x)=\ln \left(x^{2}+7\right)$ into a real Fourier series

$$
\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \cos n x+b_{n} \sin n x\right)
$$

Then $b_{3}-b_{1}-b_{2}=$
(a) 0 .
(b) $-\pi \cdot \ln \frac{11}{2}$.
(c) $\frac{\pi}{2} \cdot \ln \frac{11}{2}$.
(d) $\pi \cdot \ln \frac{11}{2}$.
(e) None of the above.
6. We expand the function $f(x)=\frac{1}{1-i e^{i x} / 2}$ into a Fourier series

$$
\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \cos n x+b_{n} \sin n x\right)
$$

Then $a_{90}=$
(a) $1 / 2^{90}$.
(b) $-1 / 2^{90}$.
(c) $i / 2^{90}$.
(d) $-i / 2^{90}$.
(e) None of the above.
(Hint: You may use the fact that

$$
1+x+x^{2}+\ldots \underset{n \rightarrow \infty}{\longrightarrow} \frac{1}{1-x}
$$

where the convergence is uniform for $|x| \leq 1-\delta$ for every fixed $\delta>0$.)
7. Let $v=(1 / 2,1 / 3,1 / 4, \ldots) \in \ell_{2}$ and let $W=\operatorname{span}\{w\} \subset \ell_{2}$, where $w=(1,1 / 2,1 / 3, \ldots)$. Let $w^{*} \in W$ be the best approximation of v in W. Then $\left\|w^{*}-v\right\|=$
(a) $\sqrt{\pi^{2} / 6-1}$.
(b) $\sqrt{\pi^{2} / 12-1 / 2}$.
(c) $\sqrt{\pi^{2} / 6-1-6 / \pi^{2}}$.
(d) $\sqrt{\pi^{2} / 6-6 / \pi^{2}}$.
(e) None of the above.
8. Let V be the vector space consisting of all continuous functions f : $[1, \infty) \rightarrow \mathbf{R}$, satisfying the condition $\int_{1}^{\infty}|f(x)|^{2} d x<\infty$. Let $\langle\cdot, \cdot\rangle$ be the inner product defined on V by:

$$
\langle f, g\rangle=\int_{1}^{\infty} f(x) g(x) d x, \quad f, g \in V
$$

Applying the Cauchy-Schwarz inequality to the functions f, g given by $f(x)=x^{-a}$ and $g(x)=x^{-b}$ for $x \in[1, \infty)$, where $a, b>1 / 2$, yields the inequality:
(a) $\frac{1}{a+b} \leq \sqrt{\frac{1}{4 a b}}$.
(b) $\frac{1}{a+b} \leq \sqrt{\frac{1}{a b}}$.
(c) $\frac{1}{a+b-1} \leq \sqrt{\frac{1}{2(2 a-1)^{2}}+\frac{1}{2(2 b-1)^{2}}}$.
(d) $\frac{1}{a+b-1} \leq \sqrt{\frac{1}{(2 a-1)(2 b-1)}}$.
(e) None of the above.
9. Let V be an inner product space, v a vector in V, and $\left\{e_{n}\right\}_{n=1}^{\infty},\left\{e_{n}^{\prime}\right\}_{n=1}^{\infty}$ two othonormal systems in V, the first of which is closed and the second not. It is known that

$$
v=\sum_{n=1}^{\infty} \alpha_{n} e_{n}=\sum_{n=1}^{\infty} \beta_{n} e_{n}^{\prime}
$$

where $\alpha_{n}=1 / 2^{n}$ for $n \geq 1$ and $\beta_{n}=1 / 3^{n}$ for $n \geq 2$, but β_{1} is not known.
(a) $\left|\beta_{1}\right|>1 / 3$.
(b) $\beta_{1}=1 / 3$.
(c) $\left|\beta_{1}\right|<\sqrt{23 / 72}$.
(d) $\left|\beta_{1}\right|$ may assume any value in the interval $[0, \sqrt{23 / 72}]$, but no value outside this interval.
(e) None of the above.
10. We expand the function

$$
f(x)= \begin{cases}3 i, & -\pi \leq x \leq 0 \\ 5, & 0<x \leq \pi\end{cases}
$$

into a real Fourier series $\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \cos n x+b_{n} \sin n x\right)$.
(a) $a_{5}=0, b_{5}=\frac{10-6 i}{5 \pi}$.
(b) $a_{5}=\frac{10-6 i}{5 \pi}, b_{5}=0$.
(c) $a_{5}=\frac{6-10 i}{5 \pi}, b_{5}=\frac{10-6 i}{5 \pi}$.
(d) $a_{5}=\frac{10-6 i}{5 \pi}, b_{5}=\frac{6-10 i}{5 \pi}$.
(e) None of the above.

Solutions

1. We have:

$$
\|g\|^{2}=\int_{0}^{1}|g(x)|^{2} d x=\int_{0}^{1} \frac{1}{(1+x)^{2}} d x=\left.\frac{-1}{1+x}\right|_{0} ^{1}=\frac{1}{2}
$$

Hence $\|g\|=1 / \sqrt{2}$, so that a unit vector in the direction of g is the vector $\sqrt{2} g$. Now:

$$
\begin{aligned}
\langle f, g\rangle & =\int_{0}^{1} \frac{1}{(2+x)(1+x)} d x \\
& =\int_{0}^{1}\left(\frac{1}{1+x}-\frac{1}{2+x}\right) d x \\
& =\log (1+x)-\left.\log (2+x)\right|_{0} ^{1}=\log \frac{4}{3}
\end{aligned}
$$

It follows that

$$
w^{*}=\langle f, \sqrt{2} g\rangle \cdot \sqrt{2} g=\log \frac{4}{3} \cdot \sqrt{2} \cdot \sqrt{2} g
$$

and therefore:

$$
\left\|w^{*}\right\|=\log \frac{4}{3} \cdot \sqrt{2}
$$

Since $f-w^{*}$ and w^{*} are orthogonal we have

$$
\|f\|^{2}=\left\|w^{*}\right\|^{2}+\left\|f-w^{*}\right\|^{2} .
$$

Now

$$
\|f\|^{2}=\int_{0}^{1} \frac{1}{(2+x)^{2}} d x=\frac{1}{6}
$$

and thus:

$$
d=\sqrt{\|f\|^{2}-\left\|w^{*}\right\|^{2}}=\sqrt{\frac{1}{6}-2 \log ^{2} \frac{4}{3}} .
$$

Thus, (c) is true.
2. Since $\|f\|=3$, we have:

$$
\sum_{k=-\infty}^{\infty}\left|c_{k}\right|^{2}=3^{2}=9
$$

Now

$$
\left\|g_{n}\right\|=\sqrt{\sum_{k=0}^{n}\left|c_{k}\right|^{2}}, \quad n=0,1, \ldots
$$

and

$$
\left\|h_{n}\right\|=\sqrt{\sum_{k=-n}^{-1}\left|c_{k}\right|^{2}}, \quad n=1,2, \ldots
$$

which clearly implies that the sequences of norms are non-decreasing. As both sequences are bounded above by $\sum_{k=-\infty}^{\infty}\left|c_{k}\right|^{2}$, they converge, say,

$$
\left\|g_{n}\right\| \underset{n \rightarrow \infty}{\longrightarrow} a, \quad\left\|h_{n}\right\| \underset{n \rightarrow \infty}{\longrightarrow} b .
$$

Clearly, $a^{2}+b^{2}=9$, and therefore

$$
\lim _{n \rightarrow \infty} r_{n}=a b \leq \frac{a^{2}+b^{2}}{2}=\frac{9}{2} .
$$

The result is the best possible as we can choose f so that $a=b=$ $\sqrt{9 / 2}$, in which case we have equality. For example, we may take $f(x)=\sqrt{9 / 2}\left(e^{i x}+e^{-i x}\right)$.

Thus, (c) is true.
3. For each k we have:

$$
\alpha_{k}=\left\langle\sum_{n=1}^{\infty} \alpha_{n} e_{n}, e_{k}\right\rangle=\left\langle v, e_{k}\right\rangle=\left\langle\sum_{n=1}^{\infty} \beta_{n} e_{n}, e_{k}\right\rangle=\beta_{k} .
$$

Thus, (d) is true.
4. For each n we have $f_{n}(0)=n^{2 / 3}$, so that $f_{n}(0) \underset{n \rightarrow \infty}{\longrightarrow} \infty$ and our sequence cannot converge pointwise, and certainly not uniformly. Now

$$
\begin{aligned}
\left\|f_{n}-0\right\|_{1} & =2 \int_{0}^{1 / n} n^{2 / 3}\left(1-n^{2} x^{2}\right) d x \\
& =2 n^{2 / 3} x-\left.2 \frac{n^{8 / 3} x^{3}}{3}\right|_{0} ^{1 / n} \\
& =4 n^{-1 / 3} / 3 \xrightarrow[n \rightarrow \infty]{\longrightarrow} 0
\end{aligned}
$$

while

$$
\begin{aligned}
\left\|f_{n}-0\right\|_{2}^{2} & =2 \int_{0}^{1 / n} n^{4 / 3}\left(1-n^{2} x^{2}\right)^{2} d x \\
& =\left.2 n^{4 / 3}\left(x-\frac{2 n^{2} x^{3}}{3}+\frac{n^{4} x^{5}}{5}\right)\right|_{0} ^{1 / n} \\
& =\frac{16}{15} n^{1 / 3} \underset{n \rightarrow \infty}{\longrightarrow} \infty .
\end{aligned}
$$

Consequently, the sequence converges to 0 in $\|\cdot\|_{1}$ but not in $\|\cdot\|_{2}$.

Thus, (d) is true.
5. The given function is even, and hence $b_{n}=0$ for each n.

Thus, (a) is true.
6. We have

$$
\frac{1}{1-i e^{i x} / 2}=1+\frac{i}{2} e^{i x}+\left(\frac{i}{2}\right)^{2} e^{2 i x}+\left(\frac{i}{2}\right)^{3} e^{3 i x}+\ldots,
$$

where the convergence of the series on the right-hand side is uniform. In particular, the convergence holds in norm, so that the series is the Fourier series of f. Hence, $c_{90}=(i / 2)^{90}$ and $c_{-90}=0$, which implies $a_{90}=c_{90}+c_{-90}=i^{90} / 2^{90}=-1 / 2^{90}$.

Thus, (b) is true.
7. We have

$$
\|w\|^{2}=\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{6}
$$

so that $\|w\|=\pi / \sqrt{6}$. Hence, a unit vector in the direction of w is the vector $e_{1}=\frac{\sqrt{6}}{\pi} w$. Now:

$$
\langle v, w\rangle=\sum_{n=1}^{\infty} \frac{1}{(n+1) n}=\sum_{n=1}^{\infty}\left(\frac{1}{n}-\frac{1}{n+1}\right)=1
$$

It follows that

$$
w^{*}=\left\langle v, e_{1}\right\rangle e_{1}=\frac{\sqrt{6}}{\pi}\langle v, w\rangle e_{1}=\frac{\sqrt{6}}{\pi} e_{1}
$$

and therefore:

$$
\left\|w^{*}\right\|=\frac{\sqrt{6}}{\pi} .
$$

Since $v-w^{*}$ and w^{*} are orthogonal we have

$$
\|v\|^{2}=\left\|w^{*}\right\|^{2}+\left\|v-w^{*}\right\|^{2}
$$

Now

$$
\|v\|^{2}=\sum_{n=2}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{6}-1
$$

which yields:

$$
\left\|w^{*}-v\right\|=\sqrt{\|v\|^{2}-\left\|w^{*}\right\|^{2}}=\sqrt{\pi^{2} / 6-1-6 / \pi^{2}} .
$$

Thus, (c) is true.
8. We need to calculate the inner product of the two vectors and their norms. Since in general for $c>1$

$$
\int_{1}^{\infty} x^{-c} d x=\left.\frac{x^{1-c}}{1-c}\right|_{1} ^{\infty}=\frac{1}{c-1}
$$

we obtain:

$$
\begin{gathered}
\langle f, g\rangle=\int_{1}^{\infty} x^{-(a+b)} d x=\frac{1}{a+b-1}, \\
\|f\|^{2}=\int_{1}^{\infty} x^{-2 a} d x=\frac{1}{2 a-1} \\
\|g\|^{2}=\int_{1}^{\infty} x^{-2 b} d x=\frac{1}{2 b-1}
\end{gathered}
$$

The Cauchy-Schwarz inequality yields:

$$
\frac{1}{a+b-1} \leq \sqrt{\frac{1}{(2 a-1)(2 b-1)}}
$$

Thus, (d) is true.
9. By Parseval's identity we have:

$$
\|v\|^{2}=\sum_{n=1}^{\infty}\left|\alpha_{n}\right|^{2}=\sum_{n=1}^{\infty}\left|\beta_{n}\right|^{2} .
$$

(Note that the question whether the system is closed or not is irrelevant.) Now

$$
\sum_{n=1}^{\infty}\left|\alpha_{n}\right|^{2}=\sum_{n=1}^{\infty} \frac{1}{4^{n}}=\frac{1}{3},
$$

and therefore

$$
\left|\beta_{1}\right|^{2}=\frac{1}{3}-\sum_{n=2}^{\infty}\left|\beta_{n}\right|^{2}=\frac{1}{3}-\frac{1}{72}=\frac{23}{72},
$$

which implies

$$
\left|\beta_{1}\right|=\sqrt{\frac{23}{72}}
$$

Thus, (a) is true.
10. Denoting by g the function given by

$$
g(x)= \begin{cases}0, & -\pi \leq x \leq 0 \\ 1, & 0<x \leq \pi\end{cases}
$$

we readily see that $f=3 i \cdot 1+(5-3 i) \cdot g$. Hence the Fourier coefficients c_{n} of f are the coefficients d_{n} of g, multiplied by $5-3 i$ (except for c_{0}, or a_{0}, where we need to take into account also the contribution of the $3 i \cdot 1$ addend). Now the Fourier coefficients of g have been calculated in class, and in particular $d_{5}=\frac{-i}{5 \pi}$ and $d_{-5}=\frac{i}{5 \pi}$. It follows that $c_{5}=\frac{-3-5 i}{5 \pi}$ and $c_{-5}=\frac{3+5 i}{5 \pi}$. Consequently, the corresponding coefficients in the real Fourier series are

$$
a_{5}=c_{5}+c_{-5}=0, \quad b_{5}=i c_{5}-i c_{-5}=\frac{10-6 i}{5 \pi}
$$

Thus, (a) is true.

