
Fourier Analysis

Exercises

1 Review Questions in Linear Algebra

1. Determine which of the following subsets of R2 form linear sub-
spaces:

(a) {(x, y) : x = y}.

(b) {(x, y) : x < y}.

(c) {(x, y) : x ≤ y}.

(d) {(x, y) : x2 = y}.

(e) {(x, y) : x = 1}.

(f) {(x, y) : x = 0}.

(g) {(x, y) : 4.7x+ 6.8y = 0}.

2. Determine which of the following subsets of C3 form linear sub-
spaces:

(a) {(x, y, z) : y = z}.

(b) {(x, y, z) : x+ y = z}.

(c) {(x, y, z) : |y| = |z|}.

(d) {(x, y, z) : xy = z}.

(e) {(x, y, z) : (2 + i)x− (3 + 4i)y − (7 + i)z = 0}.

(f) {(x, y, z) : (2 + i)x− (3 + 4i)y − (7 + i)z = 1}.

3. Let R[x] be the vector space of all polynomials over R. Deter-
mine which of the following subsets of R[x] form linear subspaces:
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(a) All polynomials of degree at most 2.

(b) All polynomials of degree exactly 2.

(c) {a0 + a1x+ a2x
2 + . . .+ anx

n : n ∈ N, an−i = ai∀0 ≤ i ≤ n}.

(d) {P ∈ R[x] : P (3) = 0}.

(e) {P ∈ R[x] : P (2 + i) = 0}.

(f) {P ∈ R[x] : P (i) = i}.

4. Denote by C[a, b] the vector space of all continuous complex-
valued functions on the interval [a, b]. Determine which of the fol-
lowing subsets of C[−1, 1] form linear subspaces:

(a) {f ∈ C[−1, 1] : f(1/2) = i}.

(b) {f ∈ C[−1, 1] : f(1/e) = 0}.

(c) {f ∈ C[−1, 1] : f(0) = (f(1) + f(−1))/2}.

(d) {f ∈ C[−1, 1] : |f(x)| ≤ 10, x ∈ [−1, 1]}.

(e) {f ∈ C[−1, 1] : f(1/4) = f 2(1/2)}.

2 Inner Product Spaces

5. Determine which of the following define inner products on Rn.
For those that are not, indicate which of the required properties fail
to hold:

(a) 〈x,y〉 = (x1 + x2 + . . . + xn)(y1 + y2 + . . . + yn) for x =
(x1, x2, . . . , xn),y = (y1, y2, . . . , yn).

(b) 〈x,y〉 =
∑n

k=1 kxkyk.

(c) 〈x,y〉 =
∑n

k=1 2kxkyk.

(d) 〈x,y〉 =
∑n

k=1 xkyn+1−k.

6. Determine which of the following define inner products on C[−1, 1].
For those that are not, indicate which of the required properties fail
to hold:

(a) 〈f, g〉 = f(0) + ḡ(0) for f, g ∈ C[−1, 1].

(b) 〈f, g〉 = f(0)ḡ(0).

(c) 〈f, g〉 =
∫ 1

−1 f(t)dt+
∫ 1

−1 ḡ(t)dt.
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(d) 〈f, g〉 =
∫ 1

−1 f(t)dt
∫ 1

−1 ḡ(t)dt.

(e) 〈f, g〉 =
∫ 1

−1 f(t)dt
∫ 1

−1 ḡ(t)dt+ f(−1/2)ḡ(−1/2).

(f) 〈f, g〉 =
∑d

k=−d f(k/d)ḡ(k/d), where d is an arbitrary fixed
positive integer.

7. Let V be an inner product space and ‖ · ‖ be the norm induced
by the inner product. Prove the so-called parallelogram identity:

‖u+ v‖2 + ‖u− v‖2 = 2(‖u‖2 + ‖v‖2).

3 Normed Spaces

8. Let V = C[−1, 1] be the vector space of all continuous functions
from [−1, 1] to C. Determine which of the following functions define
norms on V.

(a) ‖f‖ = max
−1≤x≤0

|f(x)|+ max
0≤x≤1

|f(x)|.

(b) ‖f‖ =
∫ 1

−1 |f(x)| · x2dx .

(c) ‖f‖ = max
−1≤x≤1

|f 2(x)|.

9. Let (V, ‖·‖) be a normed vector space. Assume that limn→∞ vn =
v. Prove that limn→∞ ‖vn‖ = ‖v‖ using only the triangle inequality.
(Note that this proves that the norm forms a continuous function
from V to R.)

10. Let V be an inner product space. Assume that limn→∞ un = u
and limn→∞ vn = v. Using the Cauchy-Schwarz inequality, prove
that limn→∞〈un, vn〉 = 〈u, v〉.

11. Let V = C[0, 1] and h1, h2 ∈ V be such that h1(x) ≥ h2(x) > 0

for all x. Define ‖f(x)‖1,h1 =
∫ 1

0
|f(x)| · h1(x)dx and ‖f(x)‖1,h2 =∫ 1

0
|f(x)| · h2(x)dx . Suppose that limn→∞ fn(x) = f(x) in the norm

‖.‖1,h1 . Prove that limn→∞ fn(x) = f(x) in the norm ‖.‖1,h2 .

12. Let gn : R → R be a sequence of piecewise continuous func-
tions. Assume that |gn(x)| ≤ M for all n ∈ N and x ∈ R, that∫∞
−∞ |gn(x)| dx <∞ and that gn

‖.‖1→ g. Prove that gn
‖.‖2→ g.

3



13.

(a) Employ Exercise 7 to prove that the ‖ · ‖1 norm on Cn is not
induced by any inner product.

(b) Same for ‖ · ‖∞.

4 Orthogonal Systems

14. Let v1, v2, . . . , vn be an orthogonal system in an inner product
space V . Show that: ∥∥∥∥∥

n∑
k=1

vk

∥∥∥∥∥
2

=
n∑
k=1

‖vk‖2.

15. Consider Cn with the standard inner product. Put ζ = e2πi/n.
Show that the vectors

vk = (1, ζk, ζ2k, . . . , ζ(n−1)k), k = 0, 1, . . . , n− 1,

form an orthogonal basis of the space.

16. Let V be the space of polynomials over R.

(a) Define 〈·, ·〉 by:

〈P,Q〉 =

∫ ∞
0

P (x)Q(x)e−xdx, P,Q ∈ V.

Show that 〈·, ·〉 forms an inner product on V .

(b) Show that {1, x− 1, x2/2− 2x+ 1} is an orthonormal basis of
the subspace of V , consisting of all polynomials of degree not
exceeding 2.

(c) Prove by induction that:∫ ∞
0

xne−xdx = n!, n = 0, 1, 2, . . . .

(d) Employ the previous part to show directly that the Cauchy-
Schwarz inequality holds for the vectors xm and xn.

17. Consider the space C1[−1, 1] of all continuously differentiable
complex-valued functions over [−1, 1].
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(a) Define 〈·, ·〉 by:

〈f, g〉 = f(0)g(0) +

∫ 1

−1
f ′(x)g′(x)dx, f, g ∈ C1[−1, 1].

Show that 〈·, ·〉 forms an inner product on C1[−1, 1].

(b) Characterize the subspace of those functions that are orthogo-
nal to the constants.

18. Consider the space C[−a, a] with the inner product defined
by:

〈f, g〉 =

∫ a

−a
f(x)g(x)dx, f, g ∈ C[−a, a].

Suppose we perform the Gram-Schmidt process on the space of
polynomials of degree not exceeding n, starting with the vectors
v1 = 1, v2 = x, v3 = x2, . . . , vn+1 = xn. Show that in the basis
{e1, e2, . . . , en+1} we obtain, the polynomials e1, e3, e5, . . . are even,
while the others are odd.

19. We run the Gram-Schmidt process twice, once starting from a
basis {v1, v2, . . . , vn}, and once starting from a basis {u1, u2, . . . , un},
related to the former basis by the equalities

uk = αk1v1 + αk2v2 + . . .+ αkkvk, 1 ≤ k ≤ n,

where (αkl)
n,k
k,l=1,1 is a triangular array of scalars. What is the relation

between the orthonormal bases obtained by the two processes?

5 Best Approximations

20. Let V be a normed space, v ∈ V and W a linear subspace
of V . Prove that the set of all vectors w∗ ∈ W , that are closest to v
within W , is convex. (Namely, if w∗1, w

∗
2 ∈ W are closest to v within

W , then so is the vector αw∗1 + (1− α)w∗2 for every α ∈ [0, 1].)

21. Find the nearest point(s) to v = (−2, 3) within the subspace
W = {(x,−3x) : x ∈ R} of V = R2 in the:

(a) ‖ · ‖1-norm.

(b) ‖ · ‖∞-norm.

(c) ‖ · ‖2-norm.
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22. Find the best approximation(s) for the point (x1, x2, . . . , xn) ∈
Rn within the subspace spanned by the vector (1, 1, . . . , 1) in the:

(a) ‖ · ‖1-norm.

(b) ‖ · ‖∞-norm.

(c) ‖ · ‖2-norm.

In each case, explain when we get a unique answer and when multiple
answers.

23. In R4 , let S be the span of the vectors v1 = (1, 1,−, 1,−1)
and v2 = (1, 1, 1, 1).

(a) Find the orthogonal projection of x = (1, 2, 3, 4) to S.

(b) Find the distance from x to the plane S.

24. Find the distances between the following pairs of vector and
subspace (in the ‖ · ‖2-norm):

(a) f(x) = x3, W = span {1, x, x2} ⊆ C[−1, 1].

(b) f(x) = cos2 x, W = span {1, cos 2x} ⊆ C[−π, π].

(c) f(x) = x, W = span {1, cosx, sinx} ⊆ C[−π, π].

25. Find the complex numbers α, β, γ minimizing the integral∫ 1

−1
|1 + ix− (α cos πx+ β sin πx+ γ)|2 dx.

26. Let V be the inner product space considered in Exercise 16.
Find the polynomial closest to xn in the subspace of all polynomials
of degree not exceeding 2.

27. In l2, denote:

gλ = (λ, λ2, λ3, . . .), |λ| < 1.

(a) Find the orthogonal projection of g1/3 to span{g1/2}.

(b) Find the orthogonal projection of g1/3 to span{g1/2, g1/4}.

6



6 Convergence in Normed Spaces

28. Consider the sequence of functions

fn (x) = n
√
|x|e−

n2x2

2 , n ≥ 1, x ∈ [−1, 1]

in C [−1, 1].

(a) Does fn converge pointwise to some function f ∈ C [−1, 1]?

(b) Does fn converge uniformly to some function f ∈ C [−1, 1]?

(c) Does fn converge in ‖·‖2 to the zero function?

29.

(a) Prove that for every f ∈ PC [a, b] and x ∈ [a, b]:∣∣∣∣∫ x

a

f (t) dt

∣∣∣∣ ≤ √x− a ‖f‖2 .
(Hint: Use the Cauchy-Schwarz inequality.)

(b) Prove that, if fn −−−→
n→∞

f in ‖·‖2 in PC [a, b], then fn also

converges to f in ‖·‖1.

(c) Does convergence in ‖·‖1 imply convergence in ‖·‖2 in PC [a, b]?
If yes, prove it. If not, give a counter-example.

30. Let V be the space of continuous functions f from [0,∞) to
C, satisfying ∫ ∞

0

|f (x)|2 e−xdx <∞,

with the norm:

‖f‖ =

√∫ ∞
0

|f (x)|2 e−xdx.

(a) Prove that, if (fn)∞n=1 in V converges uniformly to f , then f ∈ V
and fn converges to f in norm.

(b) Find a sequence of functions (fn)∞n=1 in V such that fn converges
in norm but does not converge uniformly on [0,∞).

(c) Find a sequence of functions (fn)∞n=1 in V such that fn converges
pointwise but not in norm.

31. Let V be an inner-product space, and {en}∞n=1 ⊂ V an or-
thonormal system.
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(a) Is there a u ∈ V such that 〈u, en〉 = 1√
n
?

(b) Assume {en}∞n=1 is a closed orthonormal system. Let u, v ∈ V
such that 〈u, en〉 = 1

n
and 〈v, en〉 = 1

n+1
. Calculate 〈u, v〉.

(c) Let u ∈ V be such that 〈u, en〉 = 1√
n(n+2)

. Find the best approx-

imations u1, u2, u3 of u in span {e1}, span {e1, e2}, span {e1, e2, e3},
respectively.

(d) Assume {en}∞n=1 is a closed orthonormal system. Calculate
‖u− u1‖, ‖u− u2‖, ‖u− u3‖, where u1, u2, u3 are the best ap-
proximations from the previous part.

32. Let V be an inner-product space. Prove or disprove the follow-
ing:

(a) Let {en}∞n=1 be an orthonormal system. Then for every u ∈ V
we have limn→∞ 〈u, en〉 = 0.

(b) Let {en}∞n=1 be an orthonormal system. Then for every u ∈ V
we have limn→∞ |〈u, en〉|2 = 0.

(c) Let W = span {e1, . . . , en}, where {ei}ni=1 is an orthogonal sys-

tem, u ∈ V and ũ =
∑n

i=1
〈u,ei〉
‖ei‖ ei. Then for every w ∈ W we

have ‖u− ũ‖ ≤ ‖u− w‖.

(d) Let W = span {e1, . . . , en}, where {ei}ni=1 is an orthonormal

system, u ∈ V and ũ =
∑n

i=1
〈u,ei〉
‖ei‖ ei. Then for every w ∈ W

we have ‖u− ũ‖ ≤ ‖u− w‖.

(e) Let W = span {e1, . . . , en}, where {ei}ni=1 is an orthonormal
system, u ∈ V and ũ =

∑n
i=1 〈u, ei〉 ei. Then for every w ∈ W

except for ũ we have ‖u− ũ‖ < ‖u− w‖.

(f) Let W = span {e1, . . . , en}, where {ei}ni=1 is any set of vectors.
Let u ∈ V and let ũ ∈ W be such that for every w ∈ W we
have ‖u− ũ‖ ≤ ‖u− w‖. Then 〈u− ũ, w〉 = 0 for all w ∈ W .

(g) Let W = span {e1, . . . , en}, where {ei}ni=1 is an orthonormal
system, u ∈ V and let ũ ∈ W be such that for every w ∈ W
we have ‖u− ũ‖ ≤ ‖u− w‖. Then ũ =

∑n
i=1 〈u, ei〉 ei.

33. Let V be the space of piecewise continuous functions f from
[0,∞) to R (functions with at most a finite number of disconti-
nuities, all of which are either removable or of type I) such that∫∞
0
|f (x)|2 dx <∞. Find a sequence in V that converges uniformly

to 0 but does not converge in the ‖·‖2 norm.
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34. Let {en}∞n=1 ⊂ L2
PC [0, 1] be a closed orthonormal system.

Prove that:
∞∑
n=1

∣∣∣∣∫ a

0

en (x) dx

∣∣∣∣2 = a, a ∈ [0, 1] .

35. Let V = L2
PC [0, 1]. Find a sequence (fn)∞n=1 in V such that fn

converges in norm to zero, but does not converge pointwise for any
x ∈ [0, 1].

7 Fourier Series

36. Find the real Fourier series for each of the following functions:

(a) f (x) = 9 cosx+ 7 sin 2x+ 11 cos 3x, x ∈ [−π, π] .

(b) f (x) =

{
sinx,

cosx,

0 < x ≤ π,

−π ≤ x ≤ 0.

37. Find the real Fourier series of the function f (x) = |x|3 , x ∈
[−π, π].

38. Find the complex Fourier series for each of the following func-
tions:

(a) f (x) = sin x
2
, x ∈ [−π, π].

(b) f (x) = π − x2, x ∈ [−π, π].

39. Find the complex Fourier series of the function f (x) = ei|x|,
x ∈ [−π, π].

40. Let f, g : R → C be piecewise continuous functions with a
period of 2π with Fourier series:

f (x) =
∞∑

n=−∞

γne
inx, g (x) =

∞∑
n=−∞

γ′ne
inx.

Find the complex Fourier series of h (x) = 1
2π

∫ π
−π f (x− t) g (t) dt.

41.

(a) Prove that for 0 < r < 1,

∞∑
n=−∞

r|n|einx =
1− r2

1− 2r cosx+ r2
.
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(b) Denote Pr (x) = 1−r2
1−2r cosx+r2 . (Pr is the Poisson kernel.) Let

f (x) be a piecewise continuous function from [−π, π] to C with
a Fourier series f (x) =

∑∞
n=−∞ cne

inx. Prove that

1

2π

∫ π

−π
f (x− t)Pr (t) dt =

∞∑
n=−∞

cnr
|n|einx,

and that the series converges absolutely and uniformly for x.

(c) Prove the following properties of the Poisson kernel:

(i) Pr (x) ≥ 0 for every x ∈ [−π, π] and r ∈ (0, 1).

(ii) Pr (x) −−−→
r→1−

0 uniformly for x on [−π,−δ] ∪ [δ, π] for any

δ > 0.

(iii) 1
2π

∫ π
−π Pr (x) dx = 1 for every r ∈ (0, 1).

(d) Let f be a continuous function f : [−π, π]→ C with f (−π) =
f (π) and Fourier series f (x) =

∑∞
n=−∞ cne

inx. Prove that

lim
r→1−

∞∑
n=−∞

cnr
|n|einx = f (x)

uniformly over x.

Remark: this exercise represents an alternative way to Fejer’s
theorem to “deal” with the fact that a Fourier series of a continuous
function does not necessarily converge. In Fejer’s theorem, we im-
prove the convergence by looking at arithmetic averages instead of
partial sums. Here we improve the convergence by multiplying the
series’ elements by r|n|.

42. Let f : [−π, π] → C be continuously differentiable k − 1
times with f (j) (−π) = f (j) (π), j = 0, . . . , k − 1, and piecewise
continuously differentiable k times. Let cn be the Fourier coefficients
of f (x). Prove that limn→∞ n

kcn = 0.

43.

(a) Find the real Fourier series of f (x) = sin px
2
p 6= 0 x ∈ [−π, π],

where p ∈ R\ {0}.

(b) Using Parseval’s identity, prove that:

∞∑
n=1

n2

(1− 4n2)2
=
π2

64
.
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44.

(a) Let h ∈ (−π, π) \ {0}. Find the Fourier series of:

f (x) =

{
0,

h2,

−π ≤ x < h,

h ≤ x ≤ π.

(b) Write Parseval’s identity for the series and calculate
∑∞

n=1
(1−(−1)n cos(2n))

n2 .

45. Let
∑∞

n=−∞ cne
inx be the Fourier series of f (x). Find the

Fourier series of the following functions:

(a) g (x) = f (x+ a) .

(b) h (x) = eimxf (x), where m is an integer.

46. Let (an)∞n=−∞ and (bn)∞n=−∞ be sequences of complex numbers
such that

∑∞
n=−∞ |an| < ∞ and

∑∞
n−∞ |bn| < ∞. Let f (x) =∑∞

n=−∞ ane
inx and g (x) =

∑∞
n=−∞ bne

inx.

(a) Show that the series
∑∞

n=−∞ am−nbn converges for every m ∈ Z
and that

∞∑
n=−∞

|cn| ≤
∞∑

n=−∞

|an| ·
∞∑

n=−∞

|bn|

where cm =
∑∞

n=−∞ am−nbn.

(b) Let h (x) =
∑∞

n=−∞ cne
inx. Show that h (x) = f (x) g (x).

(c) Show that:

‖h‖∞ ≤
∞∑

n=−∞

|an| ·
∞∑

n=−∞

|bn|

47. Use the real Fourier series of the function f (x) = cos ax on
the interval [−π, π], where a is not an integer, to show that:

(a)

1

sin aπ
=

1

aπ
+
∞∑
n=1

(−1)n
(

1

aπ + nπ
+

1

aπ − nπ

)
(b)

cot aπ =
1

aπ
+
∞∑
n=1

(
1

aπ + nπ
+

1

aπ − nπ

)

48. Let
∑∞

n=−∞ cn be an absolutely convergent series of complex
numbers.
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(a) Prove that the series
∑∞

n=−∞ cne
−inx converges uniformly on

[−π, π] to a continuous function f(x) (with equal values at −π
and π).

(b) Show that f is not necessarily piecewise continuously differen-
tiable.

49. Consider the function f defined by

f(x) = ee
ix

, −π ≤ x ≤ π.

(a) Find the Fourier series of f .

(b) Show that f is a solution of the differential equation:

y′ = ieixy.

(c) Show directly that the series obtained by term-by-term differ-
entiation of the series you have found in part (a) satisfies the
same differential equation.

50. Prove that the following two normed spaces are not complete:

(a) L2
PC[−1, 1].

(b) The space of all bounded complex-valued continuous functions
on [0,∞), equipped with the norm:

‖f‖ =

∫ ∞
0

|f(x)| · e−xdx.

51. Prove that the normed space `∞, consisting of all infinite se-
quences x = (x1, x2, . . .) of complex numbers which are bounded
(i.e., satisfy the condition supn≥1 |xn| <∞), with the norm

‖x‖∞ = sup
n≥1
|xn| <∞,

is complete.

8 The Fourier Transform

52. Compute the Fourier transform of the following functions:

(a) f(x) = x4e−|x|.

12



(b) f(x) =

{
3xe−x, x ≥ 0,

0, x < 0.

(c) f(x) = 8x3e
−4(x+1)2+5

3 .

(d) f(x) = sin 2x · e−x2 .

(e) f(x) =

{
1− |x|, −1 ≤ x ≤ 1,

0, otherwise.

53. Consider the function f defined by:

f(x) = e−x
2

∫ x

0

et
2

dt, −∞ < x <∞.

(a) Show that there exists a constant C > 0 such that f(x) > C/x
for all sufficiently large x. (Hint: Estimate the integrand from
below in the interval [x− 1/x, x].)

(b) Conclude that f /∈ L1
PC(−∞,∞).

54. Let V be the vector space of all complex-valued continuous
functions f on R, satisfying

∫∞
−∞ |f(x)|2dx < ∞, with the inner

product 〈·, ·〉 given by

〈f, g〉 =

∫ ∞
−∞

f(x)g(x)dx

and the norm ‖ · ‖2 induced by it. Let v and w be the functions

v : x 7→ e−x
2

and w : x 7→ e−2x
2
. Find the orthogonal projection of

v in the subspace spanned by w.

55. Consider the differential equation:

y′′ + xy′ + y = 0.

(a) Employing the Fourier transform, find the absolutely integrable
and twice continuously differentiable solution of the equation,
satisfying the initial conditions:

y(0) = 1, y′(0) = 0.

(b) Without employing the Fourier transform, find the general so-
lution of the equation.

56.
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(a) Compute the Fourier transform of the function f defined by:

f(x) =

{
1− x2, |x| ≤ 1,

0, |x| > 1.

(b) Employ the Fourier inversion formula to calculate the integrals:

(i) ∫ ∞
0

sinx− x cosx

x3
cosxdx.

(ii) ∫ ∞
0

sinx− x cosx

x3
cos

x

2
dx.

57.

(a) Compute the Fourier transform of the function f defined by

f(x) =


−1, −a ≤ x ≤ 0,

1, 0 < x ≤ a,

0, otherwise,

where a > 0 is a constant.

(b) Calculate the integral∫ ∞
0

cos ax− 1

x
sin bxdx

for any constants a, b > 0.

58. Utilize Plancherel’s theorem to calculate the integral∫ ∞
−∞

x2dx

(a2 + x2)(b2 + x2)
.
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