
Final #1

Mark the correct answer in each of the following questions.

1. Let V be the vector space of all real-valued continuous functions over
the interval [−1, 1], let v be the constant function 1 and W = span{w},
where w = x. Denote by w∗1, w

∗
2, and w∗∞ a vector inW that is closest to

v within W , according to the norms ‖·‖1, ‖·‖2, and ‖·‖∞, respectively.

(a) w∗1 and w∗2 are uniquely determined and are equal. However, there
are infinitely many equally good choices for w∗∞.

(b) w∗1 and w∗2 are uniquely determined and distinct. However, there
are infinitely many equally good choices for w∗∞.

(c) w∗2 and w∗∞ are uniquely determined and are equal. However, there
are infinitely many equally good choices for w∗1.

(d) w∗2 and w∗∞ are uniquely determined and distinct. However, there
are infinitely many equally good choices for w∗1.

(e) None of the above.

2. Let V be a vector space and ‖·‖ a norm on V . Define (for the sake of this
question only) a set of vectors {vn}∞n=1 as generating if for every vector
v ∈ V and ε > 0 there exist a positive integer n and complex numbers
α1, α2, . . . , αn such that ‖v − (α1v1 + α2v2 + . . .+ αnvn)‖ < ε.

Now consider the spaces `1, `2, and `∞ of all sequences x = (x1, x2, . . .)
of complex numbers, satisfying the condition

∑∞
n=1 |xn| <∞, the con-

dition
∑∞

n=1 |xn|
2 <∞, and the condition sup1≤n<∞ |xn| <∞, respec-

tively.
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Define vectors en, n = 1, 2, . . . , as follows. For each n, all entries of en
are 0, except for the n-th entry, which is 1. Note that each en resides
in all three spaces `1, `2, and `∞.

(a) The set {en}∞n=1 is generating in all three spaces `1, `2, and `∞.

(b) The set {en}∞n=1 is generating in `1 and `2, but not in `∞.

(c) The set {en}∞n=1 is generating in `2 and `∞, but not in `1.

(d) The set {en}∞n=1 is generating in `2, but neither in `1 nor in `∞.

(e) None of the above.

3. Let f be a complex-valued function, defined on the interval [0, π] only.
Suppose f ∈ L2

PC[0, π].

(a) There does not necessarily exist a Fourier series
∑∞

n=−∞ cne
inx

converging to f in ‖ · ‖2-norm (namely, such that the partial sums
Sn satisfy

∫ π
0
|f(x)− Sn(x)|2 dx −→

n→∞
0).

(b) There exists exactly one Fourier series
∑∞

n=−∞ cne
inx converging

to f in ‖ · ‖2-norm.

(c) There exist infinitely many Fourier series
∑∞

n=−∞ cne
inx converging

to f in ‖ · ‖2-norm. However, there does not necessarily exist a
series of cosines a0

2
+
∑∞

n=1 an cosnx with this property, nor does
there necessarily exist a series of sines

∑∞
n=1 bn sinnx with this

property.

(d) There exist infinitely many Fourier series
∑∞

n=−∞ cne
inx converging

to f in ‖·‖2-norm. Moreover, there exist a unique series of cosines
a0
2

+
∑∞

n=1 an cosnx with this property and a unique series of sines∑∞
n=1 bn sinnx with this property.

(e) None of the above.

4. Given a function f ∈ L2
PC[−π, π], we have considered in class the se-

quence of functions (Sn)∞n=1 of partial sums of its Fourier series. We
have also considered the sequence (σn)∞n=1, defined by:

σn(x) =
S0(x) + S1(x) + . . .+ Sn(x)

n+ 1
, −π ≤ x ≤ π.
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Here we consider an additional sequence, (τn)∞n=1, defined by:

τn(x) =
σ0(x) + σ1(x) + . . .+ σn(x)

n+ 1
, −π ≤ x ≤ π.

(a) The sequence (τn) has strictly better convergence properties than
(σn) in the following sense: If σn(x) −→

n→∞
f(x) uniformly on [−π, π],

then τn(x) −→
n→∞

f(x) uniformly as well. However, the converse is

not true in general.

(b) σn(x) −→
n→∞

f(x) uniformly on [−π, π] if and only if τn(x) −→
n→∞

f(x)

uniformly on [−π, π].

(c) If Sn(x) −→
n→∞

f(x) uniformly on [−π, π], then σn(x) −→
n→∞

f(x) uni-

formly on [−π, π]. However, if Sn(x) −→
n→∞

f(x) only pointwise, it

is not necessarily the case that σn(x) −→
n→∞

f(x) pointwise.

(d) It is possible that Sn(x) −→
n→∞

f(x) pointwise, but the convergence

τn(x) −→
n→∞

f(x) does not hold pointwise.

(e) None of the above.

5. The function f ∈ L2
PC[−π, π] is defined by:

f(x) = e
sin x
|x| .

(Note that the right-hand side is undefined for x = 0, but, due to the
definition of L2

PC, this is irrelevant.) The Fourier series of f converges
at the point 0 to:

(a) sinh 1.

(b) cosh 1.

(c) tanh 1.

(d) coth 1.

(e) None of the above.
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Reminder: The hyperbolic functions are defined by:

sinhx = ex−e−x

2
, coshx = ex+e−x

2
,

tanh = sinhx
coshx

, cothx = coshx
sinhx

.

6. Consider the family of functions {fa : a ∈ C}, defined by:

fa(x) = eax, −π ≤ x ≤ π.

(a) For every complex number a, the Fourier series of fa converges
uniformly on [−π, π] to fa.

(b) There exist infinitely many complex numbers a for which the
Fourier series of fa converges uniformly on [−π, π] to fa. However,
there also exist infinitely many complex numbers a for which the
Fourier series of fa does not converge uniformly on [−π, π] to fa.

(c) There exists a unique complex number a for which the Fourier
series of fa converges uniformly on [−π, π] to fa.

(d) For no complex number a does the Fourier series of fa converge
uniformly on [−π, π] to fa.

(e) None of the above.

7. For each n = 1, 2, 3, . . ., define the function fn : [0, 1]→ C by:

fn(x) =

{
1, 1

n+1
< x ≤ 1

n
,

0, otherwise.

Next define functions gn : [0, 1]→ C by:

gn(x) = f1(x) +
1

2
f2(x) +

1

3
f3(x) + . . .+

1

n
fn(x), n = 1, 2, 3, . . . .

(a) The sequence (gn)∞n=1 converges uniformly to some function g ∈
L2
PC[0, 1].
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(b) The sequence (gn)∞n=1 converges uniformly to some function g, that
does not necessarily belong to L2

PC[0, 1]. The sequence is a Cauchy
sequence with respect to ‖ · ‖2, but does not converge in L2

PC[0, 1].

(c) The sequence (gn)∞n=1 converges pointwise on [0, 1], but not uni-
formly. It is a Cauchy sequence with respect to ‖ · ‖2, but does
not converge in L2

PC[0, 1].

(d) The sequence (gn)∞n=1 does not converge pointwise on [0, 1], neither
is it a Cauchy sequence with respect to ‖ · ‖2.

(e) None of the above.

8. We have claimed in class that the transform of the function f , defined
by

f(x) =

{
1, a ≤ x ≤ b,

0, otherwise,

is given by

f̂(ω) =
e−iωa − e−iωb

2πiω
.

Now, the right-hand side of this formula is clearly undefined for ω = 0.
The value of f̂(0):

(a) exists, and is a real number, depending in a non-trivial way on a
and b. Moreover f̂ is continuous at the point 0.

(b) exists, and is 0 for every choice of a and b. Moreover f̂ is continuous
at the point 0.

(c) exists, but f̂ is not continuous at the point 0.

(d) is undefined.

(e) None of the above.

9. Let f be the function given by:

f(x) = e−x
4

,

and let y = f̂ . Then the function y satisfies the differential equation:
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(a)

y′ =
ω

2
y.

(b)

y′′ =
ω

3
y.

(c)

y′′′ =
ω

4
y.

(d)

y(4) =
ω

5
y.

(e) None of the above.

Solutions

1. The function v is even, while w is odd, and hence they are orthogonal,
which yields w∗2 = 0.

For every α we have

‖v − αw‖∞ ≥ (v − αw)(0) = 1.

Now, if α = 0, then clearly ‖v − αw‖∞ = 1, but for α 6= 0 we have:

‖v − αw‖∞ ≥ max{(v − αw)(1), (v − αw)(−1)} = 1 + |α| > 1.

It follows that w∗∞ = 0.

We turn to find w∗1. For every α:

‖v − αw‖1 =

∫ 1

−1
|1− αx|dx ≥

∣∣∣∣∫ 1

−1
(1− αx)dx

∣∣∣∣ = 2.

We have equality here if and only if the expression 1−αx has the same
sign throughout the interval [−1, 1], which is the case if and only if
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−1 ≤ α ≤ 1. Hence, the vector αx is a possible choice for w∗1 for every
−1 ≤ α ≤ 1.

Thus, (c) is true.

2. First we show that the set is generating in `1. Indeed, let x = (x1, x2, . . .) ∈
`1. Then: ∥∥∥∥∥x−

n∑
i=1

xkek

∥∥∥∥∥
1

=
∞∑

j=n+1

|xk| −→
n→∞

0.

The analogous claim for `2 is similarly proved.

Next we show that the set is not generating in `∞. Let v = (1, 1, . . .) ∈
`∞. Obviously, for any α1, α2, . . . , αn, all entries of the vector v −∑n

k=1 αkek from the (n+ 1)-st place on are still 1, and therefore :∥∥∥∥∥v −
n∑
i=1

αkek

∥∥∥∥∥
∞

≥ 1.

Thus, (b) is true.

3. The main observation is that, for every extension of f to a piecewise
continuous function f̃ on [−π, π], there exists a unique Fourier series
converging to f̃ in ‖ · ‖2 in L2

PC[−π, π]. All Fourier series obtained this
way certainly converge to f in ‖ · ‖2 in L2

PC[0, π].

A series of cosines converging to f on [0, π] converges to an even
function on [−π, π], and therefore is the Fourier series of the func-
tion obtained from f by requiring its extension to be even, namely
f̃(x) = f(|x|) for x ∈ [−π, π]. Similarly, a series of sines converging
to f on [0, π] converges to an odd function on [−π, π], and therefore is
the Fourier series of the function obtained from f by requiring it to be
odd, namely f̃(x) = sgn(x) · f(|x|) for x ∈ [−π, π]. Hence there are a
unique series of cosines and a unique series of sines with the required
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property.

Thus, (d) is true.

4. As we have seen, averaging improves convergence. Thus, if Sn −→
n→∞

f in

some sense (pointwise or uniformly), then σn −→
n→∞

f in the same sense.

Similarly, if σn −→
n→∞

f , then τn −→
n→∞

f . If τn −→
n→∞

f uniformly, then f is

the uniform limit of a sequence of continuous functions, and is therefore
continuous. By Féjer’s Theorem, this implies that σn −→

n→∞
f uniformly.

Thus, (b) is true.

5. Since limx→0 sinx/x = 1, we have limx→0+ sinx/|x| = 1 and limx→0− sinx/|x| =
−1. Hence the Fourier series of f converges at 0 to

f(0+) + f(0−)

2
=
e1 + e−1

2
= cosh 1.

Thus, (b) is true.

6. For every a ∈ C, the function fa (after extending it to a periodic func-
tion on R) is continuous and piecewise continuously differentiable on
[−π, π], with the possible exception of the point π. At the point π it is
continuous if and only if fa(−π) = fa(π), which is the case if and only
if e2aπ = 1, namely a is an integer multiple of i.

Thus, (b) is true.
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7. We start by observing that the intervals where the functions fn, n =
1, 2, . . . , do not vanish are pairwise disjoint. Hence, for each x ∈ [0, 1],
the sequence (gn(x))∞n=1 is eventually constant, and in particular con-
vergent. In fact, this shows that the sequence (gn) converges pointwise
as n→∞ to the function g, given by

g(x) =


1
n
, 1

n+1
< x ≤ 1

n
, n = 1, 2, . . . ,

0, x = 0.

Alternatively:

g(x) =

{
0,(⌊

1
x
,
⌋)−1 x = 0,

x > 0.

As all points 1/n are discontinuity points of g, the function does not
belong to L2

PC[0, 1].

We claim that the convergence is uniform. Since, for each n, the func-
tion |g−gn| is bounded above by 1

n+1
throughout [0, 1], the convergence

gn −→
n→∞

g is uniform. In particular, (gn) is a Cauchy sequence in ‖ · ‖∞,

and hence in ‖ · ‖2 as well.

Thus, (b) is true.

8. Since the function f belongs to L1
PC(−∞,∞), the transform is well-

defined on the whole of R and is continuous. Its value at 0 is calculated
directly from the definition:

f̂ (0) =
1

2π

∫ ∞
−∞

f (x) ei0xdx

=
1

2π

∫ b

a

dx

=
b− a
2π

.

Alternatively, since f̂ is known to be continuous, one could also calcu-
late f̂(0) by finding the limit of the expression e−iωa−e−iωb

2πiω
as ω → 0.
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Thus, (a) is true.

9. We have f ′ (x) = −4x3e−x
4
. Now:

y(3)(ω) =
1

i3
x̂3f(x)(ω)

= −1

4
i · ̂(−4x3f(x))(ω)

= −1

4
if̂ ′(ω)

= −1

4
i · iωf̂(ω)

=
ω

4
y (ω) ,

Thus, (c) is true.
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