Final \#1

Mark the correct answer in each of the following questions.

1. Let V be the vector space of all real-valued continuous functions over the interval $[-1,1]$, let v be the constant function 1 and $W=\operatorname{span}\{w\}$, where $w=x$. Denote by w_{1}^{*}, w_{2}^{*}, and w_{∞}^{*} a vector in W that is closest to v within W, according to the norms $\|\cdot\|_{1},\|\cdot\|_{2}$, and $\|\cdot\|_{\infty}$, respectively.
(a) w_{1}^{*} and w_{2}^{*} are uniquely determined and are equal. However, there are infinitely many equally good choices for w_{∞}^{*}.
(b) w_{1}^{*} and w_{2}^{*} are uniquely determined and distinct. However, there are infinitely many equally good choices for w_{∞}^{*}.
(c) w_{2}^{*} and w_{∞}^{*} are uniquely determined and are equal. However, there are infinitely many equally good choices for w_{1}^{*}.
(d) w_{2}^{*} and w_{∞}^{*} are uniquely determined and distinct. However, there are infinitely many equally good choices for w_{1}^{*}.
(e) None of the above.
2. Let V be a vector space and $\|\cdot\|$ a norm on V. Define (for the sake of this question only) a set of vectors $\left\{v_{n}\right\}_{n=1}^{\infty}$ as generating if for every vector $v \in V$ and $\varepsilon>0$ there exist a positive integer n and complex numbers $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$ such that $\left\|v-\left(\alpha_{1} v_{1}+\alpha_{2} v_{2}+\ldots+\alpha_{n} v_{n}\right)\right\|<\varepsilon$.
Now consider the spaces ℓ_{1}, ℓ_{2}, and ℓ_{∞} of all sequences $\mathbf{x}=\left(x_{1}, x_{2}, \ldots\right)$ of complex numbers, satisfying the condition $\sum_{n=1}^{\infty}\left|x_{n}\right|<\infty$, the condition $\sum_{n=1}^{\infty}\left|x_{n}\right|^{2}<\infty$, and the condition $\sup _{1 \leq n<\infty}\left|x_{n}\right|<\infty$, respectively.

Define vectors $e_{n}, n=1,2, \ldots$, as follows. For each n, all entries of e_{n} are 0 , except for the n-th entry, which is 1 . Note that each e_{n} resides in all three spaces ℓ_{1}, ℓ_{2}, and ℓ_{∞}.
(a) The set $\left\{e_{n}\right\}_{n=1}^{\infty}$ is generating in all three spaces ℓ_{1}, ℓ_{2}, and ℓ_{∞}.
(b) The set $\left\{e_{n}\right\}_{n=1}^{\infty}$ is generating in ℓ_{1} and ℓ_{2}, but not in ℓ_{∞}.
(c) The set $\left\{e_{n}\right\}_{n=1}^{\infty}$ is generating in ℓ_{2} and ℓ_{∞}, but not in ℓ_{1}.
(d) The set $\left\{e_{n}\right\}_{n=1}^{\infty}$ is generating in ℓ_{2}, but neither in ℓ_{1} nor in ℓ_{∞}.
(e) None of the above.
3. Let f be a complex-valued function, defined on the interval $[0, \pi]$ only. Suppose $f \in L_{\mathrm{PC}}^{2}[0, \pi]$.
(a) There does not necessarily exist a Fourier series $\sum_{n=-\infty}^{\infty} c_{n} e^{i n x}$ converging to f in $\|\cdot\|_{2}$-norm (namely, such that the partial sums S_{n} satisfy $\left.\int_{0}^{\pi}\left|f(x)-S_{n}(x)\right|^{2} d x \underset{n \rightarrow \infty}{\longrightarrow} 0\right)$.
(b) There exists exactly one Fourier series $\sum_{n=-\infty}^{\infty} c_{n} e^{i n x}$ converging to f in $\|\cdot\|_{2}$-norm.
(c) There exist infinitely many Fourier series $\sum_{n=-\infty}^{\infty} c_{n} e^{i n x}$ converging to f in $\|\cdot\|_{2}$-norm. However, there does not necessarily exist a series of cosines $\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos n x$ with this property, nor does there necessarily exist a series of sines $\sum_{n=1}^{\infty} b_{n} \sin n x$ with this property.
(d) There exist infinitely many Fourier series $\sum_{n=-\infty}^{\infty} c_{n} e^{i n x}$ converging to f in $\|\cdot\|_{2}$-norm. Moreover, there exist a unique series of cosines $\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos n x$ with this property and a unique series of sines $\sum_{n=1}^{\infty} b_{n} \sin n x$ with this property.
(e) None of the above.
4. Given a function $f \in L_{\mathrm{PC}}^{2}[-\pi, \pi]$, we have considered in class the sequence of functions $\left(S_{n}\right)_{n=1}^{\infty}$ of partial sums of its Fourier series. We have also considered the sequence $\left(\sigma_{n}\right)_{n=1}^{\infty}$, defined by:

$$
\sigma_{n}(x)=\frac{S_{0}(x)+S_{1}(x)+\ldots+S_{n}(x)}{n+1}, \quad-\pi \leq x \leq \pi .
$$

Here we consider an additional sequence, $\left(\tau_{n}\right)_{n=1}^{\infty}$, defined by:

$$
\tau_{n}(x)=\frac{\sigma_{0}(x)+\sigma_{1}(x)+\ldots+\sigma_{n}(x)}{n+1}, \quad-\pi \leq x \leq \pi
$$

(a) The sequence $\left(\tau_{n}\right)$ has strictly better convergence properties than $\left(\sigma_{n}\right)$ in the following sense: If $\sigma_{n}(x) \underset{n \rightarrow \infty}{\longrightarrow} f(x)$ uniformly on $[-\pi, \pi]$, then $\tau_{n}(x) \underset{n \rightarrow \infty}{\longrightarrow} f(x)$ uniformly as well. However, the converse is not true in general.
(b) $\sigma_{n}(x) \underset{n \rightarrow \infty}{\longrightarrow} f(x)$ uniformly on $[-\pi, \pi]$ if and only if $\tau_{n}(x) \underset{n \rightarrow \infty}{\longrightarrow} f(x)$ uniformly on $[-\pi, \pi]$.
(c) If $S_{n}(x) \underset{n \rightarrow \infty}{\longrightarrow} f(x)$ uniformly on $[-\pi, \pi]$, then $\sigma_{n}(x) \underset{n \rightarrow \infty}{\longrightarrow} f(x)$ uniformly on $[-\pi, \pi]$. However, if $S_{n}(x) \underset{n \rightarrow \infty}{\longrightarrow} f(x)$ only pointwise, it is not necessarily the case that $\sigma_{n}(x) \xrightarrow[n \rightarrow \infty]{n \rightarrow \infty} f(x)$ pointwise.
(d) It is possible that $S_{n}(x) \underset{n \rightarrow \infty}{\longrightarrow} f(x)$ pointwise, but the convergence $\tau_{n}(x) \underset{n \rightarrow \infty}{\longrightarrow} f(x)$ does not hold pointwise.
(e) None of the above.
5. The function $f \in L_{\mathrm{PC}}^{2}[-\pi, \pi]$ is defined by:

$$
f(x)=e^{\frac{\sin x}{|x|}}
$$

(Note that the right-hand side is undefined for $x=0$, but, due to the definition of L_{PC}^{2}, this is irrelevant.) The Fourier series of f converges at the point 0 to:
(a) $\sinh 1$.
(b) $\cosh 1$.
(c) $\tanh 1$.
(d) $\operatorname{coth} 1$.
(e) None of the above.

Reminder: The hyperbolic functions are defined by:

$$
\begin{array}{ll}
\sinh x=\frac{e^{x}-e^{-x}}{2}, & \cosh x=\frac{e^{x}+e^{-x}}{2} \\
\tanh =\frac{\sinh x}{\cosh x}, & \operatorname{coth} x=\frac{\cosh x}{\sinh x}
\end{array}
$$

6. Consider the family of functions $\left\{f_{a}: a \in \mathbf{C}\right\}$, defined by:

$$
f_{a}(x)=e^{a x}, \quad-\pi \leq x \leq \pi
$$

(a) For every complex number a, the Fourier series of f_{a} converges uniformly on $[-\pi, \pi]$ to f_{a}.
(b) There exist infinitely many complex numbers a for which the Fourier series of f_{a} converges uniformly on $[-\pi, \pi]$ to f_{a}. However, there also exist infinitely many complex numbers a for which the Fourier series of f_{a} does not converge uniformly on $[-\pi, \pi]$ to f_{a}.
(c) There exists a unique complex number a for which the Fourier series of f_{a} converges uniformly on $[-\pi, \pi]$ to f_{a}.
(d) For no complex number a does the Fourier series of f_{a} converge uniformly on $[-\pi, \pi]$ to f_{a}.
(e) None of the above.
7. For each $n=1,2,3, \ldots$, define the function $f_{n}:[0,1] \rightarrow \mathbf{C}$ by:

$$
f_{n}(x)= \begin{cases}1, & \frac{1}{n+1}<x \leq \frac{1}{n} \\ 0, & \text { otherwise }\end{cases}
$$

Next define functions $g_{n}:[0,1] \rightarrow \mathbf{C}$ by:

$$
g_{n}(x)=f_{1}(x)+\frac{1}{2} f_{2}(x)+\frac{1}{3} f_{3}(x)+\ldots+\frac{1}{n} f_{n}(x), \quad n=1,2,3, \ldots .
$$

(a) The sequence $\left(g_{n}\right)_{n=1}^{\infty}$ converges uniformly to some function $g \in$ $L_{\mathrm{PC}}^{2}[0,1]$.
(b) The sequence $\left(g_{n}\right)_{n=1}^{\infty}$ converges uniformly to some function g, that does not necessarily belong to $L_{\mathrm{PC}}^{2}[0,1]$. The sequence is a Cauchy sequence with respect to $\|\cdot\|_{2}$, but does not converge in $L_{\mathrm{PC}}^{2}[0,1]$.
(c) The sequence $\left(g_{n}\right)_{n=1}^{\infty}$ converges pointwise on $[0,1]$, but not uniformly. It is a Cauchy sequence with respect to $\|\cdot\|_{2}$, but does not converge in $L_{\mathrm{PC}}^{2}[0,1]$.
(d) The sequence $\left(g_{n}\right)_{n=1}^{\infty}$ does not converge pointwise on $[0,1]$, neither is it a Cauchy sequence with respect to $\|\cdot\|_{2}$.
(e) None of the above.
8. We have claimed in class that the transform of the function f, defined by

$$
f(x)= \begin{cases}1, & a \leq x \leq b \\ 0, & \text { otherwise }\end{cases}
$$

is given by

$$
\hat{f}(\omega)=\frac{e^{-i \omega a}-e^{-i \omega b}}{2 \pi i \omega}
$$

Now, the right-hand side of this formula is clearly undefined for $\omega=0$. The value of $\hat{f}(0)$:
(a) exists, and is a real number, depending in a non-trivial way on a and b. Moreover \hat{f} is continuous at the point 0 .
(b) exists, and is 0 for every choice of a and b. Moreover \hat{f} is continuous at the point 0 .
(c) exists, but \hat{f} is not continuous at the point 0 .
(d) is undefined.
(e) None of the above.
9. Let f be the function given by:

$$
f(x)=e^{-x^{4}}
$$

and let $y=\hat{f}$. Then the function y satisfies the differential equation:
(a)

$$
y^{\prime}=\frac{\omega}{2} y .
$$

(b)

$$
y^{\prime \prime}=\frac{\omega}{3} y .
$$

(c)

$$
y^{\prime \prime \prime}=\frac{\omega}{4} y .
$$

(d)

$$
y^{(4)}=\frac{\omega}{5} y .
$$

(e) None of the above.

Solutions

1. The function v is even, while w is odd, and hence they are orthogonal, which yields $w_{2}^{*}=0$.

For every α we have

$$
\|v-\alpha w\|_{\infty} \geq(v-\alpha w)(0)=1
$$

Now, if $\alpha=0$, then clearly $\|v-\alpha w\|_{\infty}=1$, but for $\alpha \neq 0$ we have:

$$
\|v-\alpha w\|_{\infty} \geq \max \{(v-\alpha w)(1),(v-\alpha w)(-1)\}=1+|\alpha|>1
$$

It follows that $w_{\infty}^{*}=0$.
We turn to find w_{1}^{*}. For every α :

$$
\|v-\alpha w\|_{1}=\int_{-1}^{1}|1-\alpha x| d x \geq\left|\int_{-1}^{1}(1-\alpha x) d x\right|=2 .
$$

We have equality here if and only if the expression $1-\alpha x$ has the same sign throughout the interval $[-1,1]$, which is the case if and only if
$-1 \leq \alpha \leq 1$. Hence, the vector αx is a possible choice for w_{1}^{*} for every $-1 \leq \alpha \leq 1$.

Thus, (c) is true.
2. First we show that the set is generating in ℓ_{1}. Indeed, let $\mathbf{x}=\left(x_{1}, x_{2}, \ldots\right) \in$ ℓ_{1}. Then:

$$
\left\|\mathbf{x}-\sum_{i=1}^{n} x_{k} e_{k}\right\|_{1}=\sum_{j=n+1}^{\infty}\left|x_{k}\right| \underset{n \rightarrow \infty}{\longrightarrow} 0
$$

The analogous claim for ℓ_{2} is similarly proved.
Next we show that the set is not generating in ℓ_{∞}. Let $v=(1,1, \ldots) \in$ ℓ_{∞}. Obviously, for any $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$, all entries of the vector $v-$ $\sum_{k=1}^{n} \alpha_{k} e_{k}$ from the $(n+1)$-st place on are still 1 , and therefore :

$$
\left\|v-\sum_{i=1}^{n} \alpha_{k} e_{k}\right\|_{\infty} \geq 1
$$

Thus, (b) is true.
3. The main observation is that, for every extension of f to a piecewise continuous function \tilde{f} on $[-\pi, \pi]$, there exists a unique Fourier series converging to \tilde{f} in $\|\cdot\|_{2}$ in $L_{\mathrm{PC}}^{2}[-\pi, \pi]$. All Fourier series obtained this way certainly converge to f in $\|\cdot\|_{2}$ in $L_{\mathrm{PC}}^{2}[0, \pi]$.
A series of cosines converging to f on $[0, \pi]$ converges to an even function on $[-\pi, \pi]$, and therefore is the Fourier series of the function obtained from f by requiring its extension to be even, namely $\tilde{f}(x)=f(|x|)$ for $x \in[-\pi, \pi]$. Similarly, a series of sines converging to f on $[0, \pi]$ converges to an odd function on $[-\pi, \pi]$, and therefore is the Fourier series of the function obtained from f by requiring it to be odd, namely $\tilde{f}(x)=\operatorname{sgn}(x) \cdot f(|x|)$ for $x \in[-\pi, \pi]$. Hence there are a unique series of cosines and a unique series of sines with the required
property.

Thus, (d) is true.
4. As we have seen, averaging improves convergence. Thus, if $S_{n} \underset{n \rightarrow \infty}{\longrightarrow} f$ in some sense (pointwise or uniformly), then $\sigma_{n} \xrightarrow[n \rightarrow \infty]{\longrightarrow} f$ in the same sense. Similarly, if $\sigma_{n} \underset{n \rightarrow \infty}{\longrightarrow} f$, then $\tau_{n} \underset{n \rightarrow \infty}{\longrightarrow} f$. If $\tau_{n} \underset{n \rightarrow \infty}{\longrightarrow} f$ uniformly, then f is the uniform limit of a sequence of continuous functions, and is therefore continuous. By Féjer's Theorem, this implies that $\sigma_{n} \underset{n \rightarrow \infty}{\longrightarrow} f$ uniformly.

Thus, (b) is true.
5. Since $\lim _{x \rightarrow 0} \sin x / x=1$, we have $\lim _{x \rightarrow 0+} \sin x /|x|=1$ and $\lim _{x \rightarrow 0-} \sin x /|x|=$ -1 . Hence the Fourier series of f converges at 0 to

$$
\frac{f(0+)+f(0-)}{2}=\frac{e^{1}+e^{-1}}{2}=\cosh 1 .
$$

Thus, (b) is true.
6. For every $a \in \mathbf{C}$, the function f_{a} (after extending it to a periodic function on \mathbf{R}) is continuous and piecewise continuously differentiable on $[-\pi, \pi]$, with the possible exception of the point π. At the point π it is continuous if and only if $f_{a}(-\pi)=f_{a}(\pi)$, which is the case if and only if $e^{2 a \pi}=1$, namely a is an integer multiple of i.

Thus, (b) is true.
7. We start by observing that the intervals where the functions $f_{n}, n=$ $1,2, \ldots$, do not vanish are pairwise disjoint. Hence, for each $x \in[0,1]$, the sequence $\left(g_{n}(x)\right)_{n=1}^{\infty}$ is eventually constant, and in particular convergent. In fact, this shows that the sequence $\left(g_{n}\right)$ converges pointwise as $n \rightarrow \infty$ to the function g, given by

$$
g(x)= \begin{cases}\frac{1}{n}, & \frac{1}{n+1}<x \leq \frac{1}{n}, n=1,2, \ldots \\ 0, & x=0\end{cases}
$$

Alternatively:

$$
g(x)=\left\{\begin{array}{cc}
0, & x=0 \\
\left(\left\lfloor\frac{1}{x},\right\rfloor\right)^{-1} & x>0
\end{array}\right.
$$

As all points $1 / n$ are discontinuity points of g, the function does not belong to $L_{\mathrm{PC}}^{2}[0,1]$.
We claim that the convergence is uniform. Since, for each n, the function $\left|g-g_{n}\right|$ is bounded above by $\frac{1}{n+1}$ throughout $[0,1]$, the convergence $g_{n} \underset{n \rightarrow \infty}{\longrightarrow} g$ is uniform. In particular, $\left(g_{n}\right)$ is a Cauchy sequence in $\|\cdot\|_{\infty}$, and hence in $\|\cdot\|_{2}$ as well.

Thus, (b) is true.
8. Since the function f belongs to $L_{\mathrm{PC}}^{1}(-\infty, \infty)$, the transform is welldefined on the whole of \mathbf{R} and is continuous. Its value at 0 is calculated directly from the definition:

$$
\begin{aligned}
\hat{f}(0) & =\frac{1}{2 \pi} \int_{-\infty}^{\infty} f(x) e^{i 0 x} d x \\
& =\frac{1}{2 \pi} \int_{a}^{b} d x \\
& =\frac{b-a}{2 \pi}
\end{aligned}
$$

Alternatively, since \hat{f} is known to be continuous, one could also calculate $\hat{f}(0)$ by finding the limit of the expression $\frac{e^{-i \omega a}-e^{-i \omega b}}{2 \pi i \omega}$ as $\omega \rightarrow 0$.

Thus, (a) is true.
9. We have $f^{\prime}(x)=-4 x^{3} e^{-x^{4}}$. Now:

$$
\begin{aligned}
y^{(3)}(\omega) & =\frac{1}{i^{3}} \widehat{x^{3} f(x)}(\omega) \\
& =-\frac{1}{4} i \cdot\left(-\widehat{4 x^{3} f(x)}\right)(\omega) \\
& =-\frac{1}{4} i \widehat{f^{\prime}}(\omega) \\
& =-\frac{1}{4} i \cdot i \omega \hat{f}(\omega) \\
& =\frac{\omega}{4} y(\omega)
\end{aligned}
$$

Thus, (c) is true.

