
Review

Mark all correct items.
Unless stated otherwise, G = (N, T,R, S) is a context-free grammar with-

out useless letters.

(a) If LC(S) ⊇ LC(S) · {S}, then LC(S) ⊇ LC(S) · L(G).

(b) Denote (for the purposes of this question):

LC ′(A) = {β ∈ (N∪T)∗ : S ′
∗

=⇒
r
βAγ for some γ ∈ (N∪T)∗}, A ∈ N.

Then LC ′(A) is regular for every A ∈ N .

(c) Suppose A,B ∈ N are such that A→ α ∈ R if and only if B → α ∈ R.
Then LC(A) = LC(B).

(d) The grammar defined by the rules

S → abcdeS | abcedS | . . . | edcbaS | f
(namely, there are 121 rules, the right-hand sides of the first 120 of
which are the 5! permutations of the word abcde, all followed by S, and
that of the last one is f) is LR(0).

(e) The grammar defined by the rules

S → a10b20Sa30 | a20b30Sa40 | ε
is not LR(20).

1

Solution

(a) It is true that the condition LC(S) ⊇ LC(S) · {S} implies that, for
every word w ∈ L(G), there exists a word of the form wSα which can
be produced from S ′. Indeed, since LC(S) includes the word ε, the
above condition implies that it includes the word S, so we can produce
from S ′ by rightmost derivations some word of the form SSα, and
then, operating with the first occurrence of S, all the words wSα with
w ∈ L(G). However, these latter derivations are not rightmost. In fact,
consider the grammar defined by the rules:

S → SS | a.
It is easy to verify that LC(S) = {S}∗ while L(G) = {a}+.

(b) We claim that LC ′(A) = LC(A), and in particular LC ′(A) is regular.
In fact, we obviously have LC ′(A) ⊇ LC(A). Now let β ∈ LC ′(A).

Take γ ∈ (N ∪ T)∗ such that S ′
∗

=⇒
r
βAγ. Applying to βAγ a suitable

sequence of rightmost derivations, we can produce from it a string of
the form βAw with w ∈ T ∗. Hence β ∈ LC(A), which implies the
inclusion LC ′(A) ⊆ LC(A).

(c) The relationship between possible derivations of A and of B has little
implication on rules having these letters on their right-hand side. Thus,
for example, for the grammar defined by the rules

S → AB,

A→ a,

B → a,

the condition in question is clearly satisfied, yet one checks easily that
LC(A) = {ε} while LC(B) = {A}.

(d) A word in L(G) consists of a concatenation of words, each of which is
some permutation of abcde, and a single f at the end. When parsing
the word, the first opportunity for reducing is when one arrives at the
f . After reducing this f to S, it is necessary each time to reduce the
block consisting of the last 6 letters (some permutation of abcde with
S at the end) to S. Hence the grammar is LR(0).

2

Alternatively, one checks that

LC(S) = {abcde, abced, . . . , edcba}∗.

The various LR(0)-C sets are the concatenations of this set with all
strings consisting of some permutation of abcde and an additional S at
the end, as well as with f . It is easy to see that no word in one of these
sets is a prefix of any word in another, which again yields the same
conclusion.

(e) Note first that L(G) consists of concatenations of the two words a10b20

and a20b30, in any number and order, and then a block of a’s of length
depending on the number of times each of the two words above has been
used before. Thus, when parsing a word bottom-up, one should reduce
the ε just after the last b at the word to S, and then shift each time
either 30 or 40 times, depending on whether the block of consecutive b’s
preceding the S is of length 20 or 30, respectively. After each of these
shifts one can reduce either a10b20Sa30 or a20b30Sa40 to S. Thus, the
only time it is necessary to shift beyond the reduction place is at the
first reduction, of ε to S. For example, suppose the input is a20b30a40.
After reading a20b30a20 we still do not know if the input is a20b30a40,
so that we had to reduce already 20 steps earlier, or a20b30a20b30a80 (or
another possibility out of an infinite variety of possibilities), so that we
will have to reduce only in the future. It follows that the grammar is
not LR(20). Notice that it follows from these considerations that the
grammar is LR(21).

Thus, (b), (d) and (e) are correct.

3

