
Midterm

Mark all correct answers in each of the following questions.

4. A logical expression (for the purposes of this question) is an expres-
sion made of identifiers, and symbols for negation – !, disjunction – ∨,
and conjunction – ∧. (Here, assume that identifier has already been
defined, and represents strings consisting of letters and digits, start-
ing with a letter.) A l iteral is an identifier preceded by any number of
negation signs. Any two identifiers in an expression are separated by ei-
ther a disjunction or a conjunction symbol. For example, x5 and !!!!x12
are literals; x5∧ !!x5∨ !!!x12 is a logical expression. On the other hand,
x! and x!y are not literals; ∨x and x ∧ ∧x are not logical expressions.

(a) The following is a regular definition of logical expressions:

literal → !∗ identifier ,
logicalExpression → literal ([∨∧] literal)∗.

(b) The following is a regular definition of logical expressions:

literal → !∗ identifier ,
logicalExpression → literal ([∨∧] logicalExpression)?.

(c) Suppose the truth value of a logical expression, given truth values
for the identifiers constituting it, is calculated from left to right,
with negation having precedence over conjunction, which in turn
has precedence over disjunction. A true-true logical expression
is a logical expression having the property that, if all identifiers in
it assume the value T, then the expression assumes the same value.
For example, x∧ !!y ∨ !x is a true-true expression, but x∧ !x∨ !y is
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not. Then the following is a regular definition of true-true logical
expressions:

TTLiteral → (!!)∗ identifier ,
TTConjunctiveExpression → TTLiteral (∧ TTLiteral)∗,
TTLogicalExpression → (logicalExpression ∨)?

TTConjunctiveExpression
(∨ logicalExpression)?.

(Assume that logicalExpression is any correct regular definition
of logical expressions, not necessarily one of the definitions in the
previous parts.)

(d) A f alse-f alse logical expression is a logical expression having the
property that, if all identifiers in it assume the value F, then the
expression assumes the same value. A cute logical expression is
a logical expression which is both true-true and false-false. For
example, x∨ !!y is cute. Then there does not exist a regular defi-
nition of cute logical expressions.

In Questions 5 and 6, G = (N, T,R, S) denotes an arbitrary context-
free grammar, unless indicated otherwise.

5. (a) If L(G) is closed under concatenation (namely, if u, v ∈ L(G) then
uv ∈ L(G)) and contains two non-commuting words (i.e., words
u, v such that uv 6= vu), then G is ambiguous.

(b) If G is unambiguous and L(G) has the property that L(G)m ∩
L(G)n = ∅ for every m > n ≥ 0, then the grammar

G′ = (N ∪ {S ′}, T, R ∪ {S ′ → SS ′, S ′ → ε}, S ′)

(where S ′ /∈ N) is an unambiguous grammar such that L(G′) =
L(G)∗.

(c) The grammars G1 and G2, defined by the rules

E → E + A | E − A | A,
A → a | b | c,
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and
E → A+ E | A− E | A,
A → a | b | c,

respectively, are designed to produce certain collections of arith-
metic expressions. Now G1 gives the right interpretation of all
expressions and is unambiguous. However, G2 does not give the
right interpretation (of some expressions), and in particular is am-
biguous.

(d) If S → SS ∈ R and L(G) includes a word of length 10, then G is
ambiguous.

6. (a) Suppose R includes (among others) the rules S → Abac and S →
Abca, and it is known that A

∗
=⇒ a100b100c100. Then G is not an

LL(101) grammar, but it may be an LL(102) grammar.

(b) Let Gi = (Ni, T, Ri, Si) for i = 1, 2, where N1 ∩N2 = ∅. Put

G = (N1 ∪N2 ∪ {S}, T, R1 ∪R2 ∪ {S → S1, S → S2}, S),

where S /∈ N1∪N2. (Recall that L(G) = L(G1)∪L(G2).) If G1, G2

are LL(10) grammars, then G is an LL(11) grammar.

(c) Suppose the rules in R for replacing the non-terminals A,B ∈ N
are:

A→ bSDabS | aacD,
B → bSDabS | aacD.

Suppose also that there exist words α ∈ (N ∪ T )∗ and w ∈ L(G)
such that all three non-terminals A,B,D occur in α at least once
and S

∗
=⇒α

∗
=⇒w. Then G is not an LL(1) grammar.

(d) The grammar defined by the rules

S → Ab | cB,
A→ Ac | dB | aaba,
B → dBBcS | bSA,

then it is not an LL(1) grammar, but it is an LL(k) grammar for
every sufficiently large k.
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Solutions

4. (a) The negation symbols preceding the identifier are represented by
!∗, and hence the first line of the suggested definition represents
literals. A logical expression consists of a literal, after which
we may have an arbitrary number of occurrences of a disjunc-
tion/conjunction symbol together with a literal. Hence the sug-
gested definition indeed represents logical expressions.

(b) expression that is of the same specifications as those of a logical
expression. However, in a regular definition one cannot use in any
line terms not previously defined. Hence the suggested definition
is not a regular definition.

(c) A logical expression consisting of a single literal is clearly true-
true if and only if the identifier is preceded by an even number of
occurrences of the negation symbol. Thus, true-true literals are
represented by the right-hand side of the first line of the definition.
Due to the precedence rules, after the values of all literals have
been computed, we compute the truth values of all (maximal)
blocks of literals separated by conjunction symbols only, and then
calculate the truth value of the whole expression. A block of
literals separated by conjunction symbols assumes the value T if
and only if all literals within it are true-true. Hence the whole
expression is true-true if and only if at least one of the blocks
within it consists of true-true literals. It follows that the suggested
definition is correct.

(d) A logical expression consisting of a single literal is false-false if and
only if the identifier is preceded by an even number of occurrences
of the negation symbol (same as the condition for being true-true).
Similarly to the considerations in the preceding part, we conclude
that a logical expression is false-false if and only if all (maximal)
blocks of literals separated by conjunction symbols include at least
one literal preceded by an even number of occurrences of the nega-
tion symbol. One concludes easily that the logical expressions that
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are both true-true and false-false are represented by the definition:

FFLiteral → TTLiteral ,
FFConjunctiveExpression → (literal ∧)∗ FFLiteral (∧ literal)∗,
TTFFLogicalExpression → (TTLogicalExpression ∨)?

FFConjunctiveExpression
(∨ TTLogicalExpression)?.

Note that it would suffice to find a regular definition for false-false
logical expressions. In fact, the collection of cute expressions is
the intersection of those of true-true expressions and of false-false
expressions. Once both are known to have regular definitions, so
does the intersection (even if finding an explicit definition may be
tiresome).

Thus, (a) and (c) are true.

5. (a) The grammar defined by the rules

S → aS | bS | ε,
is unambiguous (and even LL(1)), yet L(G) = {a, b}∗, which lan-
guage includes pairs of non-commuting words.

(b) The grammar defined by the rules

S → a | ab | ba,
is clearly unambiguous. Since each word in L(G)m contains ex-
actly m occurrences of the letter a, we have L(G)m ∩ L(G)n = ∅
for m > n. However, G′ is ambiguous. For example, the word aba
can be produced in two different ways, namely

S ′=⇒SS ′=⇒ aS ′=⇒ aSS ′=⇒ abaS ′=⇒ aba,

and
S ′=⇒SS ′=⇒ abS ′=⇒ abSS ′=⇒ abaS ′=⇒ aba.

(c) It is true that G2 constructs for some expressions a parse tree that
would hint at calculating the expressions not in accordance with
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the usual precedence rules. For example, the expression a− b− c
is derived as follows:

E=⇒ A− E =⇒ a− E =⇒ a− A− E
=⇒ a− b− E =⇒ a− b− A =⇒ a− b− c.

Thus, it would correspond to the computation of a − (b − c).
However, this is irrelevant to the properties of the grammar. In
fact, both grammars are unambiguous. Let us show it for G2 first.
Take a word w. We need to show it has a unique parse tree (if it
belongs to L(G2) at all). If the word is of length 1 we must use
the rule E → A first, and then use for A the rule taking it to the
only letter of w. Now let |w| ≥ 2. We have to start with the rule
A→ A+E if the second letter of w is ′+′ and the rule A→ A−E
if that letter is ′−′. Next for A we must use the rule taking it to
the first letter of w. Now it remains to derive from E the suffix
of w consisting of all the word but the first two letters. Thus, an
inductive argument shows that the parse tree is unique. In fact,
our argument shows that G2 is LL(2).

The argument for G1 is analogous, but here we need to start look-
ing at the word from its end backwards. Note that G1 is not LL(k)
for any k.

(d) Let w be any word in L(G). We claim that the word w3 has at least
two parse trees. In fact, one may obtain this word by applying
twice the rule S → SS to get SSS, and then obtain a w from each
of the three occurrences of S. Since the second derivation above
might have been either that of the first S in the word or that of
the second, we have two distinct derivations of w3.

Thus, (d) is true.

6. (a)G is not even LL(301) in this case. In fact, both words a100b100c100bac
and a100b100c100bca belong to L(G), since

S=⇒Abac
∗

=⇒a100b100c100bac

and
S=⇒Abca

∗
=⇒a100b100c100bca.
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The two words have the same first 301 letters, yet already the
derivation of S applied at the first stage is distinct for the two
words. We mention that G may be LL(302).

(b) The conditions clearly do not guarantee that the languages L(G1)
and L(G2) are disjoint. If they are not disjoint, then every word
in w ∈ L(G1) ∩ L(G2) can be produced in G in two ways: Either
replace S by S1 and produce w according to the rules of G1, or
analogously via S2.

(c) G may well be an LL(1) grammar. For example, suppose it is
given by the rules:

S → aABD | b,
A→ bSDabS | aacD,
B → bSDabS | aacD,
D → d.

The condition in the question is satisfied since

S=⇒ aABD
∗

=⇒ aaacDaacDd
∗

=⇒ aaacdaacdd.

The grammar is obviously LL(1) since the right-hand sides of
the rules for replacing each of the terminals start with distinct
terminals. The fact that A and B may be replaced by exactly
the same strings means that one can simplify the grammar (by
omitting B from N , deleting the rules for replacing B, and then
replacing B by A wherever it appears on the right-hand side of a
rule), but is has nothing to do with the grammar being LL(1).

(d) We have

A=⇒ dB=⇒ dbSA=⇒ dbAbA=⇒dbaababA,

and therefore

A
∗

=⇒(dbaabab)nA=⇒(dbaabab)naaba, n = 0, 1, 2 . . . .

It follows that

S=⇒Ab
∗

=⇒(dbaabab)naabab, n = 0, 1, 2 . . . ,
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and

S=⇒Ab=⇒Acb
∗

=⇒(dbaabab)naabacb, n = 0, 1, 2 . . . .

Thus, when parsing (dbaabab)naabab and (dbaabab)naabacb, after
replacing S by Ab, we do not know which production to use for
A by knowing the first 7n+ 4 letters of the word. Hence G is not
LL(k) for any k.

Thus, none of the claims is true.
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