Final \#2

Mark all correct answers in each of the following questions.
Unless stated otherwise, $G=(N, T, R, S)$ is a context-free grammar without useless letters.
4. (a) If $L(G)$ is infinite, and every word in $L(G)$ has at least two parse trees, then there exists at least one word in $L(G)$ that has infinitely many parse trees.
(b) The grammar defined by the rules

$$
\begin{aligned}
& E \rightarrow E+T+T \mid T, \\
& T \rightarrow T * F * F \mid F * F, \\
& F \rightarrow a|b| c,
\end{aligned}
$$

is unambiguous. If the rule $T \rightarrow F * F$ is replaced by the rule $T \rightarrow \varepsilon$, then we again obtain an unambiguous grammar.
(c) The grammar defined by the rules

$$
\begin{aligned}
& S \rightarrow A D \mid E C, \\
& A \rightarrow a A \mid \varepsilon, \\
& C \rightarrow c C \mid \varepsilon \\
& D \rightarrow b D c \mid \varepsilon, \\
& E \rightarrow a E b \mid \varepsilon
\end{aligned}
$$

is ambiguous. However, the language consisting of all words in $L(G)$, having more than one parse tree, is context-free.
(d) Let $G_{i}=\left(N_{i}, T, R_{i}, S_{i}\right)$ for $i=1,2$, where $N_{1} \cap N_{2}=\emptyset$. It is given that $L\left(G_{1}\right)$ consists of all words in $\{a, b\}^{*}$ for which $|w|_{b}=|w|_{a}$, such that no proper prefix u of w (i.e., $u \neq \varepsilon, w$) satisfies $|u|_{b}=$ $|u|_{a}$. The language $L\left(G_{2}\right)$ consists of all words in $\{a, b\}^{*}$ for which
$|w|_{b}=|w|_{a}+1$. (Here $|v|_{\sigma}$ denotes the number of occurrences of the letter σ in the word v.) Then the grammar
$G=\left(N_{1} \cup N_{2} \cup\{S\},\{a, b\}, R_{1} \cup R_{2} \cup\left\{S \rightarrow S_{1} S_{2}, S \rightarrow S_{2} S_{1} S_{1}\right\}, S\right)$,
(where $S \notin N_{1} \cup N_{2}$), is ambiguous.
5. (a) The grammar defined by the rules
$S \rightarrow a b c d e S|a b c e d S| \ldots|e d c b a S| f$
(namely, there are 121 rules, the right-hand sides of the first 120 of which are the 5 ! permutations of the word abcde, all followed by S, and that of the last one is f), is $L L(5)$ but not $L L(4)$.
(b) Consider the grammar defined by the rules

$$
\begin{aligned}
& S \rightarrow A S \mid A \\
& A \rightarrow w_{1} A\left|w_{2} A\right| \ldots\left|w_{m} A\right| \varepsilon,
\end{aligned}
$$

where $w_{1}, w_{2}, \ldots w_{m}$ are distinct non-empty words in T^{*}. In general, the grammar may be ambiguous. However, if none of the words w_{i} may be written as a concatenation of several other w_{j} 's (perhaps with repetitions), then the grammar is unambiguous, and even $L L(k)$ for sufficiently large k.
(c) Let $G^{\prime}=\left(N, T, R^{\prime}, S\right)$, where
$R^{\prime}=\left\{A \rightarrow w \in R: w \in T^{*}\right\} \cup\left\{A \rightarrow \alpha^{\prime}: \exists A \rightarrow \alpha \in R, \alpha \underset{l}{\Longrightarrow}\right\}$.
(Here $\alpha \underset{l}{\Longrightarrow} \alpha^{\prime}$ means that α yields α^{\prime} by employing a single leftmost derivation.) Suppose G is an $L L(1)$ grammar. Then G^{\prime} is $L L(2)$, but not necessarily $L L(1)$.
(d) Let $G^{\prime}=\left(N, T, R^{\prime}, S\right)$, where R^{\prime} is obtained from R as follows: Each rule $A \rightarrow \alpha$ is replaced by a rule $A \rightarrow \alpha^{\prime}$, such the first letter of α^{\prime} coincides with that of α. (In particular, if $|\alpha| \leq 1$ then $\alpha^{\prime}=\alpha$.) Then G^{\prime} is $L L(1)$ if and only if G is such.
6. (a) Denote (for the purposes of this question):

$$
L C(a A)=\left\{\beta \in(N \cup T)^{*}: S^{\prime} \underset{r}{*} \beta a A w,\left(w \in T^{*}\right)\right\}, \quad a \in T, A \in N .
$$

Then the language $L C(a A)$ is regular for every $a \in T, A \in N$.
(b) If $S \rightarrow S a S \in R$ (in addition to other rules), then $L C(S) \supseteq$ $L(G)\{a\}$.
(c) The grammar defined by the rules
$S \rightarrow a b S c|c b S a| b S a c \mid b c a$
is $L R(0)$.
(d) The grammar defined by the rules
$S \rightarrow S S S a \mid b$
is $L R(0)$.

Solutions

4. (a) Given any unambiguous grammar, we can turn it into a grammar accepting the same language, with exactly two parse trees for every word. In fact, let $G=(N, T, R, S)$ be the initial grammar. Take two "copies" of G, say $G_{i}=\left(N_{i}, T, R_{i}, S_{i}\right), i=1,2$, where $N_{1} \cap$ $N_{2}=\emptyset$ and the sets of non-terminals and of rules of each G_{i} are "equivalent" to those of G. That is, if $A \rightarrow \alpha \in R$, then $A_{i} \rightarrow \alpha_{i} \in R_{i}$, where α_{i} is obtained from α by replacing each nonterminal B by B_{i}. Now let $G^{\prime}=\left(N_{1} \cup N_{2} \cup\left\{S^{\prime}\right\}, T, R_{1} \cup R_{2} \cup\left\{S^{\prime} \rightarrow\right.\right.$ $S_{1}, S^{\prime} \rightarrow S_{2}$). It is easy to verify that G^{\prime} satisfies the claim.
For example, the grammar defined by the rules

$$
\begin{aligned}
& S \rightarrow S A \mid A \\
& A \rightarrow a A b \mid a b,
\end{aligned}
$$

is easily seen to be unambiguous. The grammar defined by the rules

$$
\begin{aligned}
& S \rightarrow S_{1} \mid S_{2}, \\
& S_{1} \rightarrow S_{1} A_{1} \mid A_{1}, \\
& A_{1} \rightarrow a A_{1} b \mid a b, \\
& S_{2} \rightarrow S_{2} A_{2} \mid A_{2}, \\
& A_{2} \rightarrow a A_{2} b \mid a b,
\end{aligned}
$$

accepts the same language, each word in exactly two ways.
(b) To show that the grammar is unambiguous, suppose we are given a word $w \in L(G)$. Suppose in the process of deriving this word, the rule $E \rightarrow E+T+T$ is applied n times. Since no other rule has a ' + ' on the right-hand side, this means that w must contain exactly $2 n$ occurrences of this symbol. In other words, the number of occurrences of ' + ' in w determines uniquely the number of times the rule $E \rightarrow E+T+T$ must be applied. Now we need to show that from a word of the form $T+T+\ldots+T$ we can produce w in a unique way. In fact, similarly to the preceding stage, we see that the number of occurrences of the symbol ' $*$ ' between any two consecutive occurrences of ' + ' in w determines uniquely the number of times the rule $T \rightarrow T * F * F$ has been applied to the initial T between them. Finally, each occurrence of a, b, c is due to an application of the rules producing these letters from F.
The situation if the rule $T \rightarrow T * F * F$ is replaced by $T \rightarrow \varepsilon$ is very similar. The difference is that the string between any two consecutive occurrences of ' + ' may be empty, and it starts ("unnaturally") with a ' $*$ ' if it is non-empty.
(c) From the non-terminal A, one can produce the language $\{a\}^{*}$, from C - the language $\{c\}^{*}$, from D - the language $\left\{b^{n} c^{n}: n \geq 0\right\}$, and from E - the language $\left\{a^{n} b^{n}: n \geq 0\right\}$. Thus, from $A D$ one can produce the language $\{a\}^{*}\left\{b^{n} c^{n}: n \geq 0\right\}$, and from $B C$ - the language $\left\{a^{n} b^{n}: n \geq 0\right\}\{c\}^{*}$. It is readily seen that each word in the latter two languages can be produced in a unique way from the mentioned string. Since the intersection of the two languages is $\left\{a^{n} b^{n} c^{n}: n \geq 0\right\}$, this language is exactly the set of all words with two parse trees. Summing up, G is ambiguous, and the language consisting of all words with more than one parse tree (in our case - exactly two such trees) is non-context-free.
(d) Clearly, $a b \in L\left(G_{1}\right)$ and $a b b, b a b a b \in L\left(G_{2}\right)$. Hence the word $a b b a b a b$ can be produced in G in two different ways,

$$
S \Longrightarrow S_{1} S_{2} \stackrel{*}{\Longrightarrow}(a b)(b a b a b)=a b b a b a b,
$$

and

$$
S \Longrightarrow S_{2} S_{1} S_{1} \xlongequal{*}(a b b)(a b)(a b)=a b b a b a b .
$$

Thus, (b) and (d) are true.
5. (a) We claim that the grammar is $L L(4)$. Indeed, assume we have to decide which rule to use. If the next input letter is f, then clearly we must use the rule $S \rightarrow f$. If not, then the next 4 letters are 4 distinct letters out of the 5 letters a, b, c, d, e. The letter following these must be the one not represented among the 4 . Thus, based on the next 4 letters we know that the next 5 are going to be, say, $\sigma_{1} \sigma_{2} \sigma_{3} \sigma_{4} \sigma_{5}$. We now must use the rule $S \rightarrow \sigma_{1} \sigma_{2} \sigma_{3} \sigma_{4} \sigma_{5} S$.
We mention that the grammar is clearly not $L L(3)$.
(b) The grammar may be ambiguous also due to the concatenation of several w_{i} 's being equal to that of several others. For example, suppose $w_{1}=a, w_{2}=a b, w_{3}=b c, w_{4}=c$. Then the word $a b c$ has two distinct leftmost derivations,

$$
S \Longrightarrow A S \Longrightarrow a A S \Longrightarrow a S \Longrightarrow a A \Longrightarrow a b c A \Longrightarrow a b c
$$

and

$$
S \Longrightarrow A S \Longrightarrow a b A S \Longrightarrow a b S \Longrightarrow a b A \Longrightarrow a b c A \Longrightarrow a b c
$$

(c) Consider the grammar defined by the rules

$$
S \rightarrow a b S \mid b
$$

Clearly, the grammar is $L L(1)$. The grammar obtained from it according to the process in the question is defined by the rules

$$
S \rightarrow a b a b S|a b b| b
$$

This grammar is not $L L(2)$ as, for words starting with $a b$, the first two letters do not determine the rule to use already at the first step.
(d) Consider the grammar defined by the rules

$$
\begin{aligned}
& S \rightarrow A b \mid c, \\
& A \rightarrow a \mid \varepsilon
\end{aligned}
$$

It is readily verified that the grammar is $L L(1)$. However, the grammar defined by the rules

$$
\begin{aligned}
& S \rightarrow A c \mid c, \\
& A \rightarrow a \mid \varepsilon,
\end{aligned}
$$

obtained from it when replacing the rule $S \rightarrow A b$ by $S \rightarrow A c$, is not even unambiguous (as the word c has two parsing trees).

Thus, none of the claims is true.
6. (a) By the definition of $\operatorname{LC}(a A)$, this language consists of all words in $L C(A)$ ending with a, with this a omitted. Since $L C(A)$ is regular, so is the intersection $L C(A) \cap(N \cup T)^{*}\{a\}$. Now, by omitting the last letter from all words in some regular language, we obtain again a regular language. Hence $L C(a A)$ is regular.
(b) Suppose G is defined by the rules

$$
S \rightarrow S a S \mid b
$$

Then $L C(S)=\{\varepsilon\} \cup L C(S)\{S a\}$, which yields $L C(S)=\{S a\}^{*}$. On the other hand, $L(G)$ includes the word b, and hence $L C(S)$ does not contain $L(G)\{a\}$.
(c) We have

$$
L C(S)=\{\varepsilon\} \cup L C(S)\{a b\} \cup L C(S)\{c b\} \cup L C(S)\{b\}
$$

which yields

$$
L C(S)=\{a b, b, c b\}^{*}
$$

It follows that:

$$
\begin{aligned}
L R(0)-C(S \rightarrow a b S c) & =\{a b, b, c b\}^{*}\{a b S c\}, \\
L R(0)-C(S \rightarrow c b S a) & =\{a b, b, c b\}^{*}\{c b S a\}, \\
L R(0)-C(S \rightarrow b S a c) & =\{a b, b, c b\}^{*}\{b S a c\}, \\
L R(0)-C(S \rightarrow b c a) & =\{a b, b, c b\}^{*}\{b c a\} .
\end{aligned}
$$

Denote these four languages by $L_{1}, L_{2}, L_{3}, L_{4}$. A word α in one of the first three of these languages is clearly not a prefix of another word in the same language due to the location of S in the word. A word in L_{4} ends with $c a$, but does not contain this subword anywhere else, so that words in L_{4} are not prefixes of each other. For the same reason, a word in L_{4} is not a prefix of a word in
L_{1}, L_{2}, L_{3}. In the other direction, a word $\alpha \in L_{1}, L_{2}, L_{3}$ is clearly not a prefix of a word $\beta \in L_{4}$, as α includes an S, whereas β does not. To see that a word in L_{3} is not a prefix of a word in L_{1}, L_{2}, we just need to note the location of the single occurrence of S in the two words. Similar reasoning shows that a word in either L_{1} or L_{2} is not a prefix of a word in the other, and a word in L_{1} is not a subword of a word in L_{3}.
Now we show that a word $\alpha \in L_{2}$ is not a prefix of some $\beta \in L_{3}$. In fact, assume α is a prefix of β. Then there exists a word $w \in\{a b, b, c b\}^{*}$ such $w c$ also belongs to $\{a b, b, c b\}^{*}$ and $\alpha=w c b S a, \beta=w c b S a c$. However, no word in $\{a b, b, c b\}^{*}$ ends with c, and consequently this situation is also impossible.
Finally, $L R(0)-C\left(S^{\prime} \rightarrow S\right)=S$. Since S is not a prefix of any word in $L_{1}, L_{2}, L_{3}, L_{4}$, neither is any such word a prefix of S, the condition for a grammar to be $L R(0)$ is satisfied, so that G is such.
(d) The grammar is clearly not $L R(0)$. Suppose the input word is, say, b. We reduce the b to S, but then we do not know whether we should reduce this S to $S^{\prime \prime}$ or shift.
Using the criterion for a grammar to be $L R(0)$, we first see that

$$
L C(S)=\{\varepsilon\} \cup L C(S)\{S\} \cup L C(S)\{S S\}
$$

which yields

$$
L C(S)=\{S\}^{*}
$$

It follows that:

$$
\begin{array}{ll}
L R(0)-C(S \rightarrow S S S a) & =\{S\}^{*}\{S S S a\}, \\
L R(0)-C(S \rightarrow b) & =\{S\}^{*}\{b\} .
\end{array}
$$

Obviously, no word in any of these two languages is a prefix of some other word in the same language or the other. However, the word $S \in L R(0)-C\left(S^{\prime} \rightarrow S\right)$ is a prefix of all these words, which implies that the grammar is not $L R(0)$.
Thus, (a) and (c) are true.

