
Final #2

Mark all correct answers in each of the following questions.
Unless stated otherwise, G = (N, T,R, S) is a context-free grammar with-

out useless letters.

4. (a) If L(G) is infinite, and every word in L(G) has at least two parse
trees, then there exists at least one word in L(G) that has infinitely
many parse trees.

(b) The grammar defined by the rules

E → E + T + T | T,
T → T ∗ F ∗ F | F ∗ F,
F → a | b | c,

is unambiguous. If the rule T → F ∗ F is replaced by the rule
T → ε, then we again obtain an unambiguous grammar.

(c) The grammar defined by the rules

S → AD | EC,
A→ aA | ε,
C → cC | ε,
D → bDc | ε,
E → aEb | ε,

is ambiguous. However, the language consisting of all words in
L(G), having more than one parse tree, is context-free.

(d) Let Gi = (Ni, T, Ri, Si) for i = 1, 2, where N1∩N2 = ∅. It is given
that L(G1) consists of all words in {a, b}∗ for which |w|b = |w|a,
such that no proper prefix u of w (i.e., u 6= ε, w) satisfies |u|b =
|u|a. The language L(G2) consists of all words in {a, b}∗ for which

1

|w|b = |w|a + 1. (Here |v|σ denotes the number of occurrences of
the letter σ in the word v.) Then the grammar

G = (N1∪N2∪{S}, {a, b}, R1∪R2∪{S → S1S2, S → S2S1S1}, S),

(where S /∈ N1 ∪N2), is ambiguous.

5. (a) The grammar defined by the rules

S → abcdeS | abcedS | . . . | edcbaS | f
(namely, there are 121 rules, the right-hand sides of the first 120
of which are the 5! permutations of the word abcde, all followed
by S, and that of the last one is f), is LL(5) but not LL(4).

(b) Consider the grammar defined by the rules

S → AS | A,
A→ w1A | w2A | . . . | wmA | ε,

where w1, w2, . . . wm are distinct non-empty words in T ∗. In gen-
eral, the grammar may be ambiguous. However, if none of the
words wi may be written as a concatenation of several other wj’s
(perhaps with repetitions), then the grammar is unambiguous,
and even LL(k) for sufficiently large k.

(c) Let G′ = (N, T,R′, S), where

R′ = {A→ w ∈ R : w ∈ T ∗} ∪ {A→ α′ : ∃A→ α ∈ R, α=⇒
l
α′}.

(Here α=⇒
l
α′ means that α yields α′ by employing a single left-

most derivation.) Suppose G is an LL(1) grammar. Then G′ is
LL(2), but not necessarily LL(1).

(d) Let G′ = (N, T,R′, S), where R′ is obtained from R as follows:
Each rule A → α is replaced by a rule A → α′, such the first
letter of α′ coincides with that of α. (In particular, if |α| ≤ 1 then
α′ = α.) Then G′ is LL(1) if and only if G is such.

6. (a) Denote (for the purposes of this question):

LC(aA) = {β ∈ (N∪T)∗ : S ′
∗

=⇒
r
βaAw, (w ∈ T ∗)}, a ∈ T,A ∈ N.

Then the language LC(aA) is regular for every a ∈ T,A ∈ N.

2

(b) If S → SaS ∈ R (in addition to other rules), then LC(S) ⊇
L(G){a}.

(c) The grammar defined by the rules

S → abSc | cbSa | bSac | bca
is LR(0).

(d) The grammar defined by the rules

S → SSSa | b
is LR(0).

Solutions

4. (a) Given any unambiguous grammar, we can turn it into a grammar
accepting the same language, with exactly two parse trees for every
word. In fact, let G = (N, T,R, S) be the initial grammar. Take
two “copies” of G, say Gi = (Ni, T, Ri, Si), i = 1, 2, where N1 ∩
N2 = ∅ and the sets of non-terminals and of rules of each Gi

are “equivalent” to those of G. That is, if A → α ∈ R, then
Ai → αi ∈ Ri, where αi is obtained from α by replacing each non-
terminal B by Bi. Now let G′ = (N1∪N2∪{S ′}, T, R1∪R2∪{S ′ →
S1, S

′ → S2). It is easy to verify that G′ satisfies the claim.

For example, the grammar defined by the rules

S → SA | A,
A→ aAb | ab,

is easily seen to be unambiguous. The grammar defined by the
rules

S → S1 | S2,

S1 → S1A1 | A1,

A1 → aA1b | ab,
S2 → S2A2 | A2,

A2 → aA2b | ab,

3

accepts the same language, each word in exactly two ways.

(b) To show that the grammar is unambiguous, suppose we are given
a word w ∈ L(G). Suppose in the process of deriving this word,
the rule E → E + T + T is applied n times. Since no other rule
has a ‘+’ on the right-hand side, this means that w must contain
exactly 2n occurrences of this symbol. In other words, the number
of occurrences of ‘+’ in w determines uniquely the number of times
the rule E → E + T + T must be applied. Now we need to show
that from a word of the form T + T + . . . + T we can produce
w in a unique way. In fact, similarly to the preceding stage, we
see that the number of occurrences of the symbol ‘∗’ between any
two consecutive occurrences of ‘+’ in w determines uniquely the
number of times the rule T → T ∗ F ∗ F has been applied to the
initial T between them. Finally, each occurrence of a, b, c is due
to an application of the rules producing these letters from F .

The situation if the rule T → T ∗ F ∗ F is replaced by T → ε
is very similar. The difference is that the string between any
two consecutive occurrences of ‘+’ may be empty, and it starts
(“unnaturally”) with a ‘∗’ if it is non-empty.

(c) From the non-terminal A, one can produce the language {a}∗, from
C – the language {c}∗, from D – the language {bncn : n ≥ 0}, and
from E – the language {anbn : n ≥ 0}. Thus, from AD one can
produce the language {a}∗{bncn : n ≥ 0}, and from BC – the
language{anbn : n ≥ 0}{c}∗. It is readily seen that each word in
the latter two languages can be produced in a unique way from the
mentioned string. Since the intersection of the two languages is
{anbncn : n ≥ 0}, this language is exactly the set of all words with
two parse trees. Summing up, G is ambiguous, and the language
consisting of all words with more than one parse tree (in our case
– exactly two such trees) is non-context-free.

(d) Clearly, ab ∈ L(G1) and abb, babab ∈ L(G2). Hence the word
abbabab can be produced in G in two different ways,

S=⇒S1S2
∗

=⇒ (ab)(babab) = abbabab,

and
S=⇒S2S1S1

∗
=⇒ (abb)(ab)(ab) = abbabab.

4

Thus, (b) and (d) are true.

5. (a) We claim that the grammar is LL(4). Indeed, assume we have to
decide which rule to use. If the next input letter is f , then clearly
we must use the rule S → f . If not, then the next 4 letters are 4
distinct letters out of the 5 letters a, b, c, d, e. The letter following
these must be the one not represented among the 4. Thus, based
on the next 4 letters we know that the next 5 are going to be, say,
σ1σ2σ3σ4σ5. We now must use the rule S → σ1σ2σ3σ4σ5S.

We mention that the grammar is clearly not LL(3).

(b) The grammar may be ambiguous also due to the concatenation
of several wi’s being equal to that of several others. For example,
suppose w1 = a, w2 = ab, w3 = bc, w4 = c. Then the word abc has
two distinct leftmost derivations,

S=⇒AS=⇒ aAS=⇒ aS=⇒ aA=⇒ abcA=⇒ abc,

and

S=⇒AS=⇒ abAS=⇒ abS=⇒ abA=⇒ abcA=⇒ abc.

(c) Consider the grammar defined by the rules

S → abS | b.
Clearly, the grammar is LL(1). The grammar obtained from it
according to the process in the question is defined by the rules

S → ababS | abb | b.
This grammar is not LL(2) as, for words starting with ab, the first
two letters do not determine the rule to use already at the first
step.

(d) Consider the grammar defined by the rules

S → Ab | c,
A→ a | ε.

It is readily verified that the grammar is LL(1). However, the
grammar defined by the rules

5

S → Ac | c,
A→ a | ε,

obtained from it when replacing the rule S → Ab by S → Ac, is
not even unambiguous (as the word c has two parsing trees).

Thus, none of the claims is true.

6. (a) By the definition of LC(aA), this language consists of all words
in LC(A) ending with a, with this a omitted. Since LC(A) is
regular, so is the intersection LC(A) ∩ (N ∪ T)∗{a}. Now, by
omitting the last letter from all words in some regular language,
we obtain again a regular language. Hence LC(aA) is regular.

(b) Suppose G is defined by the rules

S → SaS | b.
Then LC(S) = {ε} ∪ LC(S){Sa}, which yields LC(S) = {Sa}∗.
On the other hand, L(G) includes the word b, and hence LC(S)
does not contain L(G){a}.

(c) We have

LC(S) = {ε} ∪ LC(S){ab} ∪ LC(S){cb} ∪ LC(S){b},

which yields
LC(S) = {ab, b, cb}∗.

It follows that:

LR(0)-C(S → abSc) = {ab, b, cb}∗{abSc},
LR(0)-C(S → cbSa) = {ab, b, cb}∗{cbSa},
LR(0)-C(S → bSac) = {ab, b, cb}∗{bSac},
LR(0)-C(S → bca) = {ab, b, cb}∗{bca}.

Denote these four languages by L1, L2, L3, L4. A word α in one of
the first three of these languages is clearly not a prefix of another
word in the same language due to the location of S in the word.
A word in L4 ends with ca, but does not contain this subword
anywhere else, so that words in L4 are not prefixes of each other.
For the same reason, a word in L4 is not a prefix of a word in

6

L1, L2, L3. In the other direction, a word α ∈ L1, L2, L3 is clearly
not a prefix of a word β ∈ L4, as α includes an S, whereas β does
not. To see that a word in L3 is not a prefix of a word in L1, L2,
we just need to note the location of the single occurrence of S in
the two words. Similar reasoning shows that a word in either L1

or L2 is not a prefix of a word in the other, and a word in L1 is
not a subword of a word in L3.

Now we show that a word α ∈ L2 is not a prefix of some
β ∈ L3. In fact, assume α is a prefix of β. Then there exists
a word w ∈ {ab, b, cb}∗ such wc also belongs to {ab, b, cb}∗ and
α = wcbSa, β = wcbSac. However, no word in {ab, b, cb}∗ ends
with c, and consequently this situation is also impossible.

Finally, LR(0)-C(S ′ → S) = S. Since S is not a prefix of any
word in L1, L2, L3, L4, neither is any such word a prefix of S, the
condition for a grammar to be LR(0) is satisfied, so that G is such.

(d) The grammar is clearly not LR(0). Suppose the input word is,
say, b. We reduce the b to S, but then we do not know whether
we should reduce this S to S ′ or shift.

Using the criterion for a grammar to be LR(0), we first see that

LC(S) = {ε} ∪ LC(S){S} ∪ LC(S){SS},

which yields
LC(S) = {S}∗.

It follows that:

LR(0)-C(S → SSSa) = {S}∗{SSSa},
LR(0)-C(S → b) = {S}∗{b}.

Obviously, no word in any of these two languages is a prefix of
some other word in the same language or the other. However, the
word S ∈ LR(0)-C(S ′ → S) is a prefix of all these words, which
implies that the grammar is not LR(0).

Thus, (a) and (c) are true.

7

