
Final #1

Mark all correct answers in each of the following questions.
Unless stated otherwise, G = (N, T,R, S) is a context-free grammar with-

out useless letters.

4. (a) If G is ambiguous, then L(G) includes at most finitely many words
having a unique parse tree.

(b) There exists an algorithm which, for every non-terminal A and
terminal a, determines whether there exists a word w ∈ T ∗, con-
taining at least one occurrence of a, such that A

∗
=⇒w.

(c) Let G′ = (N, T,R′, S), where R′ = {A → αR : A → α ∈ R}.
(Here αR is the word consisting of the same letters as α, but in
the opposite order.) Then G′ is unambiguous if and only if G is
such.

(d) The grammar defined by the rules
S → SaSa | bb
is unambiguous.

5. (a) If there exist two non-terminals A,B such that Nullable(A) =
Nullable(B) = true, then G is not LL(1).

(b) The grammar defined by the rules
S → a2Sb2 | a5b5 | b5a5

is LL(3), but not LL(2).

(c) The grammar defined by the rules

S → AS | A,

1

A→ aAb | ab,
is not LL(k) for any k.

(d) Let w1, w2, . . . , wm be distinct words of length 10 in T ∗. Then the
grammar defined by the rules
S → w1S | w2S | . . . | wmS | ε
is LL(k) for sufficiently large k.

6. (a) The grammar defined by the rules
S → a3Sb3 | a9b9 | b9a9

is LR(1), but not LR(0).

(b) If S → SaS, S → SbS ∈ R (in addition to other rules) and
ca3b2c ∈ LC(S), then LC(S) includes over 1030 strings of length
207.

(c) If for every word w = σ1σ2 . . . σn ∈ L(G) there exists only one
subword w′ = σiσi+1 . . . σj for which there exists a non-terminal
A with a rule A→ w′, and this non-terminal is unique, then G is
LR(0).

(d) Denote (for the purposes of this question):

RC(A) = {γ ∈ (N ∪ T)∗ : S ′
∗

=⇒
r
βAγ}, A ∈ N.

Then RC(A) is regular for each A ∈ N .

Solutions

4. (a) It is possible for all words except for one to have a unique parse
tree. In fact, start from any unambiguous grammar G. Add to
N a new non-terminal A and to R the rules S → A and A → w,
where w is any word in L(G). For the new grammar, w is the only
word with two parse trees.

2

(b) Let M be the set of non-terminals from which one can produce
a word including an occurrence of a. Initialize M as the set of
all non-terminals for which there exists a rule whose right-hand
side includes an a. Next add to M all non-terminals for which
there exists a rule whose right-hand side includes a non-terminal
already in M . Continue in the same way until at some stage no
non-terminals have been added to M . The set M we have at this
stage is the required set.

(c) Every sequence of leftmost derivations for G gives rise to a corre-
sponding sequence of rightmost derivations for G′, as follows. To
the sequence

S =⇒
l
γ1 =⇒

l
γ2 =⇒

l
. . . =⇒

l
γn = w ∈ T ∗

there corresponds the sequence

S =⇒
r
γR1 =⇒

r
γR2 =⇒

r
. . . =⇒

r
γRn = wR ∈ T ∗.

The correspondence is clearly one-to-one. Hence, G has more than
one sequence of leftmost derivations producing a word w ∈ T ∗ if
and only if G′ has more than one sequence of rightmost derivations
producing the word wR. Consequently, either both grammars are
ambiguous or both are unambiguous.

(d) One way to see that the grammar is unambiguous is to notice
that it is what might be called RR(1). Namely, the last letters of
the right-hand sides of the two rules in this grammar are distinct
terminals. Thus, similarly to the case of LL(1) grammars, when
trying to parse top-down, but using rightmost derivations, we have
at each stage a unique possible way to continue.

In fact, one may connect it to the preceding question. The gram-
mar obtained by “reversing” all rules is obviously an LL(1) gram-
mar, and in particular unambiguous, and therefore so is the given
grammar.

Another way to see it is related to bottom-up parsing. First note
by induction that no word in L(G) may contain three consecutive
b’s. Hence, given a word in {a, b}∗, we may first reduce each occur-
rence of the block bb to S. Now we have a word in {a, S}∗, to be

3

reduced to S. Notice that, if this word has been produced from S,
then it contains some occurrences of the block SaSa. Moreover,
by induction on the number of derivations, we see that the last oc-
currence of this block must have been obtained by deriving an S,
and hence we may reduce this block back to S. Continuing to
reduce in this way, we finally get to S (or to another word which
contains no occurrences of the block SaSa, which means that the
original word does not belong to L(G)).

Thus, (b), (c) and (d) are true.

5. (a) In general, to know if a grammar is LL(1) or not, we need to
consider the rules relating to the same non-terminal. The reason is
that we need to decide at each stage in the parse which rule to use
for a given non-terminal. The “competitors” are the various rules
for the same non-terminal, and not the various non-terminals.

For example, the grammar defined by the rules

S → AB,

A→ aA | ε,
B → bB | ε,

is clearly LL(1) even though all non-terminals are nullable.

(b) The grammar is certainly not even LL(5). In fact, consider the
sequences of derivations

S =⇒ a2Sb2 =⇒ a4Sb4 =⇒ a6Sb6 =⇒ a11b11,

and
S =⇒ a5b5.

The words produced in both cases have the same first 5 letters,
yet already the first derivation was distinct.

Let us show for completeness that G is LL(6). In fact, every
sequence of derivations yielding a word in L(G) applies the first
rule for S a certain number of times, and then either the second
or the third rule once. Thus, suppose we have applied the first
rule n times by now. The word we have is a2nSb2n, and we need

4

to get to some word of the form a2nu. If the first letter of u is b,
we must apply now the third rule. If the prefix of length 6 of u is
a5b, we must apply the second rule. Otherwise, we need to apply
the first rule. Thus, at each point during the parse, the following
6 letters suffice in order to determine the rule to be applied.

(c) From the non-terminal A, one can produce any word of the form
anbn with n ≥ 1, and only such words. It follows that L(G)
consists of concatenations of such words. The grammar is unam-
biguous since the number of anbn blocks in a word determines the
number of times the rule S → AS should be applied. Namely, if
the number of blocks is r, then this rule should be applied r − 1
times, followed by the rule S → A, to yield Ar, from which can
produce words made of r blocks.

However, the grammar is not LL(k) for any k. The reason is that
in the beginning we need to apply the rule S → AS or S → A
depending on whether the number of anbn blocks in the input
word is greater than 1 or equal to 1, respectively. Thus, for any
k, the two words akbk and akbkab, that have the same prefix of
length k (and even 2k), require a different rule to be applied for
them at the first stage, so that k letters are not always sufficient
to determine which rule to apply.

(d) The grammar is LL(10). In fact, at each point during the parse,
we already produced a word wi1wi2 . . . win , where 1 ≤ ij ≤ m for
each j, and need to produce from it the word wi1wi2 . . . winu for
a certain u. If u = ε then we apply the rule S → ε to finish the
parsing. Otherwise, the prefix of length 10 of u must be one of
the wj’s, so that we must apply the rule S → wjS with that j.

We mention in passing that G may be LL(k) for some k < 10. In
fact, if no two of the words wj have the same prefix of length k,
then G is LL(k). Thus, for the minimal k possessing this property,
G is LL(k) but not LL(k − 1).

Thus, (c) and (d) are true.

6. (a) It is easy to verify that

L(G) = {a3nb3n : n ≥ 3} ∪ {a3nb9a9b3n : n ≥ 0}.

5

Let us show that the grammar is LR(1), but not LR(0). Suppose
first that the input word w is of the form a3nb9a9b3n. We need to
shift 3n+ 18 places, reduce the b9a9 to S, and then n consecutive
times shift 3 places and reduce a3Sb3 to S. Thus, we know when
to reduce long before we have shifted enough to be able to actually
reduce. In fact, after reading the prefix a3nb9a we know that the
word must be a3nb9a9b3n. Only after shifting 8 more places can
we reduce for the first time. Then, after shifting each time 3 more
places we can reduce. (Thus, up to this point we may well suspect
that the grammar is LR(0).)

Now let the input be of the form a3nb3n. This time we have to
shift 3n+ 9 places, reduce a9b9 to S, and then continue as before.
However, at the point where have to make the first reduction we
are still in doubt. In fact, the prefix we have read up to this point,
namely a3nb9, is also a prefix of the word a3nb9a9b3n. Hence we are
not sure yet that we need to reduce. Only after shifting one place,
thus having read the word a3nb10, do we know that the input word
must be a3nb3n, and can make all further reductions right when
we have read all letters participating in the reduction.

Let us also show that the grammar is not LR(0) using the context
sets. We have

LC(S) = LC(S ′) ∪ LC(S) · {a3},

and therefore LC(S) = {a3}∗. Consequently:

LR(0)-C(S → a3Sb3) = {a3}∗{a3Sb3},
LR(0)-C(S → a9b9) = {a3}∗{a9b9},
LR(0)-C(S → b9a9) = {a3}∗{b9a9}.

Since the word a9b9 ∈ LR(0)-C(S → a9b9) is a prefix of the word
a9b9a9 ∈ LR(0)-C(S → b9a9), the grammar is not LR(0).

(b) We have

LC(S) ⊇ LC(S ′) ∪ LC(S) · {Sa} ∪ LC(S) · {Sb}.

Since ca3b2c ∈ LC(S), this implies

LC(S) ⊇ {ca3b2c} · {Sa, Sb}∗.

6

Thus, the set of strings of length 207 belonging to LC(S) contains
all words of the form ca3b2cα1α2 . . . α100, where each αi is either
Sa or Sb. The number of words of this type is

2100 = (210)10 > 100010 = 1030.

We mention in passing that LC(S) contains, according to the
data in the question, all the language {aS, bS, ca3b2c}∗, and in
particular words of length 207 other than the ones noted above.

(c) The given property implies only that, when given an input word,
there is just one possibility of reducing it. However, the condition
implies nothing about the following steps. For example, consider
the grammar defined by the rules
S → aS | a2S | b.
Clearly, L(G) = {a}∗{b}. For any word anb ∈ L(G), the only
reduction possible initially is of the b to S. However, later it is
not clear at each step whether we should reduce aS to S or a2S
to S. In fact, the grammar is even ambiguous.

(d) Consider the grammar defined by the rules

S → AB,

A→ ε,

B → aBb | ε.
One verifies straightforwardly that

RC(A) = {anbn : n ≥ 0} · {ε, B},

which is not regular.

Thus, (a) and (b) are true.

7

