
Review

Mark all correct answers in each of the following questions.

1. An integer expression is (for the purposes of this question) a sequence
of integers with the four arithmetic operations between them. Each
integer is represented by a non-empty sequence of digits, optionally
preceded by a sign. The following are some examples of integer expres-
sions:

• 123.

• +3−+5/222 ∗ −7/− 4.

• +03−+050/000000222 ∗ −7/− 04.

• 00− 000/00 ∗ 00− 00000.

The following are not integer expressions:

• 3 + + + 3.

• 2 ∗ (3 + 4).

(a) The following constitutes a regular definition of an integer expres-
sion:

digit → [0− 9]
number → [+−]? digit+

operator → + | − | ∗ | /
integerExpression → number (operator number)∗

(b) As you have seen above, an integer expression may have a zero
after a division sign. The following regular definition describes the

1

set of all integer expressions with the exception of those containing
some representation of zero after a division sign:

digit → [0− 9]
nonZeroDigit → [1− 9]
number → [+−]? digit+

nonZeroNumber → [+−]? nonZeroDigit digit∗

plusMinusTimes → + | − | ∗
over → /
integerExpression → number

((plusMinusTimes number) |
(over nonZeroNumber))∗

(c) Going back to part (a), we want to add the possibility of exponen-
tiation in integer expressions. Exponentiation may be denoted by
either the symbol ˆ or by ∗∗. Thus, the following become integer
expressions:

• 123 ˆ 456.

• +0 ˆ 00/0 ∗ ∗0 ∗ 0.

We accomplish the change by updating the definition of operator
as follows:

operator → + | − | ∗ | / | ˆ | ∗ ∗

The change is correct (whether or not the rest of the regular defini-
tion, as given in part (a) is correct). However, the lexical analyzer
will have a difficulty with exponents denoted by ∗∗. It will read
the first ∗, and then expect to find another number. When it will
read the second ∗, it will give a compilation error.

(d) The grammar defined by the following rules accepts the language
of all integer expressions:

intExp → intExp expPart | integer
expPart → expPart op integer | ε
integer → optionalSign intPart digit
op → + | − | ∗ | /
optionalSign → + | − | ε
intPart → intPart digit | ε
digit → 0 | 1 | . . . | 9

2

(e) The grammar in part (d) (whether or not it accepts the language
of integer expressions) is left-recursive. By eliminating all direct
left-recursion we obtain a grammar with neither direct nor indirect
left-recursion.

(f) Define an integer as large if its absolute value is strictly larger than
1024. It is impossible to provide a regular definition of integer ex-
pressions consisting only of large integers. However, it is possible
define a context-free grammar accepting the language of all such
integer expressions.

Solution

1. (a) The definition is correct. Each symbol is defined before being
used; digit is a digit (character between 0 and 9), number is a
sequence of one or more digits that may be preceded by either a
plus or a minus sign, operator is one of the four basic arithmetic
operations, and integerExpression is a sequence of one or more
numbers, separated by operators.

(b) Here, nonZeroNumber requires the number to start with a non-
zero digit. Thus, the string 01, for example, will not be considered
a nonZeroNumber .

(c) When reading the input and splitting it into tokens, the lexical
analyzer looks for the longest strings that agree with one of the
token definitions. Hence, in our case, after reading a ∗, the lex-
ical analyzer distinguishes between the cases where the following
character is +, −, a digit, ∗, or another character. In the first
three cases the preceding ∗ will be understood as a full lexeme,
and the next character as starting a new number token. In the
fourth case, the string ∗∗ will be understood as a full lexeme of
type operator . In the last case there will be a compilation error.

(d) One checks easily that intPart produces any sequence of digits,
integer produces any unsigned or signed integer, expPart produces

3

any sequence of op-integer pairs. Finally, intExp produces an
integer followed by any sequence of expParts, namely an integer
followed by op-integer pairs, as required.

(e) The recursive non-terminals are intExp, expPart , and intPart .
Eliminating direct recursion according to the algorithm shown in
class (without taking advantage of obvious shortcuts that are pos-
sible in our case), we obtain the grammar:

intExp → integer intExp ′

intExp ′ → expPart intExp ′ | ε
expPart → expPart ′

expPart ′ → op integer expPart ′ | ε
integer → optionalSign intPart digit
op → + | − | ∗ | /
optionalSign → + | − | ε
intPart → intPart ′

intPart ′ → digit intPart ′ | ε
digit → 0 | 1 | . . . | 9

For each of the rules, the rules for the first letter on the right-hand
side (if it is a non-terminal) appear only later in our list. Hence
we obviously have no indirect left-recursion.

(f) The collection of all unsigned large integers is the complement in
{0, 1, . . . , 9}∗ of the set {0}∗{0, 1, . . . , 1024}, and hence regular. A
regular definition of large integers is the following:

longLarge → [1− 9] digit digit digit digit+

lastThreeDigits → [1-9] digit digit | 0[3-9] digit | 02[5-9]
lengthFourLarge → [2-9] digit digit digit | 1 lastThreeDigits
unsignedLarge → longLarge | lengthFourLarge
largeNumber → [+−]? 0∗ unsignedLarge

Here, the idea is that longLarge describes unsigned integers of 5
digits and above; these integers are all large. Other large unsigned
integers must be of four digits. Those that start with any digit but
1 are necessarily large, as are those starting with 1 and then any
digit but 0, those starting with 10 and then any digit larger than
2, and finally those starting with 102 and then any digit above 4.

4

All these may be preceded by a sign and any number of leading
zeros.

Thus, (a), (d) and (e) are correct.

5

