Review

Mark all correct items.
Unless stated otherwise, $G=(N, T, R, S)$ is a context-free grammar without useless letters.
(a) If a grammar is not $L L(10)$ then there exist two distinct words in $L(G)$ whose prefixes consisting of the first 10 letters of each are identical.
(b) If $L(G)$ contains two distinct words whose prefixes consisting of the first 10 letters of each are identical, then G is not an $L L(10)$ grammar.
(c) Suppose $G_{i}=\left(N, T, R_{i}, S\right)$ for $i=1,2$, where $R_{1} \subseteq R_{2}$. If G_{2} is $L L(k)$ for some k then so is G_{1}.
(d) Suppose $N=\{S, A\}$ and $T=\{a, b\}$. Then there exists an $L L(2)$ grammar with $|R|=12$.
(e) If $|N|=|T|=5$ and $|R|=100$, then G is not $L L(1)$.

Solution

(a) Consider the grammar defined by the rules

$$
\begin{aligned}
& S \rightarrow A \mid a^{10}, \\
& A \rightarrow a^{10} .
\end{aligned}
$$

Clearly, $L(G)=\left\{a^{10}\right\}$, so that $L(G)$ does not even contain two distinct words. However, the grammar is not $L L(10)$ (and is in fact even ambiguous) since the word a^{10} can be produced in two distinct ways, namely $S \Longrightarrow a^{10}$ and $S \Longrightarrow A \Longrightarrow a^{10}$.
(b) The grammar defined by the rules

$$
S \rightarrow a S|b S| \varepsilon
$$

is clearly $L L(10)$ (and even $L L(1)$), yet $L(G)=\{a, b\}^{*}$ contains numerous pairs of distinct words with identical prefixes of length 10 .
(c) Every parse tree for G_{1} is clearly a parse tree for G_{2}. The fact that G_{2} is $L L(k)$ means that, at each point of constructing the parse tree top-down, the next k letters of the input give at most one possible continuation. Since every production of G_{1} is also a production of G_{2}, we certainly have at most one possible continuation for G_{1} corresponding to these next k letters.
(d) The grammar defined by the rules

$$
\begin{aligned}
& S \rightarrow a a A|a b S| b a S|b b A| a \mid b, \\
& A \rightarrow a a S|a b S| b a A|b b S| a \mid b,
\end{aligned}
$$

is $L L(2)$. In fact, when parsing a word, at each stage, if we still have to produce a word of length exceeding 1 , the following two letters of the input word give exactly one possible production to apply (one of the first four productions for the relevant non-terminal). If the remaining word is of length 1 we again have exactly one possible continuation (one of the last two productions), while if the remaining word is empty then we are stuck. (Notice, by the way, that $L(G)$ consists of all words of odd length over $\{a, b\}$.)
(e) For a grammar to be $L L(1)$, the FIRST sets of the right-hand sides of the rules corresponding to each non-terminal need to be pairwise disjoint. Thus, if $|T|=5$, then for each non-terminal there are at most 5 rules with non-empty FIRST sets. Recall that, in an $L L(1)$ grammar, for each non-terminal A there may be at most at most one rule $A \rightarrow \alpha$ with $\operatorname{Nullable}(\alpha)$. Hence, in our case, each non-terminal may also admit one rule $A \rightarrow \alpha$ such that the only word in T^{*} that may be produced from α is ε. Altogether, for each non-terminal we have at most 6 rules, so that $|R| \leq 5 \cdot 6=30$. We mention in passing that the following grammar with $|R|=30$ is in fact $L L(1)$:

$$
\begin{aligned}
& S \rightarrow a S|b S| c A|d C| e A \mid \varepsilon, \\
& A \rightarrow a S|b D| c D|d B| e C \mid \varepsilon \\
& B \rightarrow a D|b B| c S|d C| e D \mid \varepsilon \\
& C \rightarrow a B|b B| c S|d B| e S \mid \varepsilon \\
& D \rightarrow a C|b A| c A|d B| e B \mid \varepsilon .
\end{aligned}
$$

Thus, (c), (d) and (e) are correct.

