
Compiler Construction

Exercises

1 Review of some Topics in Formal Languages

1.

(a) Prove that two words x, y commute (i.e., satisfy xy = yx) if
and only if there exists a word w such that x = wm, y = wn for
some non-negative integers m,n.

(b) Characterize all pairs of words x, y, z satisfying the equality
x2y2 = z2.

(c) Characterize all triples of words x, y, z satisfying the equality
xyz = yzx.

2. Let Σ = {a, b, . . . , z, 0, 1, . . . , 9, }. Let L be the language con-
sisting of all non-empty words over Σ which (i) do not start with a
digit, (ii) do not contain two consecutive occurrences of ‘ ’, and (iii)
do not end with ‘ ’.

(a) Construct a regular expression r such that L(r) = L.

(b) Construct a DFA accepting L.

(c) How many words of each length n does L include?

3. Show that the following languages over Σ are regular:

(a) The collection of all words whose length is congruent to k mod-
ulo m (where 0 ≤ k ≤ m− 1).

(b) The collection of all words having the property that, for some
fixed positive integer k and all pairs of letters σ1, σ2, the dif-
ference between the number of occurrences of σ1 and of σ2 in
every prefix does not exceed k.

1

4. How many words of length n do the languages, corresponding
to the following regular expressions, contain?

(a) σ∗1σ
∗
2 . . . σ

∗
k (where the σi’s are all distinct).

(b) (0 ∪ 11 ∪ 22 ∪ 3333 ∪ 4444 ∪ 5555 ∪ 6666)∗.

5. Show that, if L is a regular language, then so are the following
languages:

(a) The language obtained by replacing, in each word of L, each
occurrence of aa by b. (The replacement is done consecutively;
thus, the block a2k is replaced by bk and the block a2k+1 by
bka.)

(b) The language obtained from L by deleting the second last letter
in every word of length 2 or more:

6. Let L1, L2 be two languages over Σ. Show that the “equation”

L1L ∪ L2 = L

has a solution. Moreover, if L1, L2 are both regular (or both context-
free), then there exists a solution L with the same property.

7. Let Σ = {a, b, c}. Construct DFA’s accepting the following
languages:

(a) All words containing neither aaa nor aca as a subword.

(b) All words containing either ababa or abcba as a subword.

8. Construct NFA’s accepting the languages corresponding to the
following regular expressions:

(a) bab(bba ∪ abb)∗bab.

(b) ab(ab ∪ bba)∗ ∪ a(ba ∪ φ∗)bba.

9. Present an algorithm which, given a DFA, returns all words of
minimal length accepted by it (or an error if it accepts the empty
language).

10.

(a) Show that an infinite regular language may be written as an
infinite disjoint union of infinite regular languages.

(b) Does an infinite context-free language necessarily contain an
infinite regular language?

2

11. Show that the following languages are not regular:

(a) {ambncm+n : m,n ≥ 0}.

(b) {akblcmdn : k, l,m, n ≥ 0, |{k, l,m, n}| ≥ 2}.

(c) {0m3+n3
: m,n ≥ 0}.

12. Given a set of non-negative integers, the set of their expansions
in base 10 forms a partial language of {0, 1, . . . , 9}∗. For each of the
following sets show that the corresponding language is regular or
not (as indicated):

(a) All powers of 1000 (regular).

(b) All powers of 7 (not regular).

(c) All perfect cubes (not regular).

13. Find the language accepted by the grammar:

S → AB | BA ,

A→ aAb | ε ,

B → bBa | ε .

14. Let a1, a2, . . . , ar be positive integers and b1, b2, . . . , br non-
negative integers. Consider the language {σa1n+b1

1 σa2n+b2
2 . . . σarn+br

r :
n ≥ 0}, where σ1, σ2, . . . , σr are any letters, not necessarily distinct.
Specify the conditions under which this language is context-free.

15. Construct a DFA accepting the same language as the grammar:

S → abS | baS | bcA,

A→ babB,

B → bcbaC,

C → abaC | bC | ε.

16. Construct a pushdown automaton accepting the same lan-
guage as the grammar:

S → ε | SbS | AbS | SaB,

A→ Bb | a2,

B → b2S | baA | b2.

3

17. Consider the grammar G defined by:

S → S + S | S ∗ S | a | b | c.

(a) Is the language L(G) regular? If yes – find a DFA accepting
the same language as G and a regular grammar G′ equivalent
to G. If not – prove it.

(b) How many words of each length does the language L(G) in-
clude?

(c) How many derivation trees yield each word in L(G)? (Hint:
Find a recurrence for the sequence which expresses the required
number as a function of the word’s length.)

2 Lexical Analysis

18.

(a) Write a regular expression r such that L(r) consists of all identi-
fiers (i.e., all strings of letters and digits, starting with a letter),
with the exception of the three strings “if”, “int” and “integer”.

(b) Construct a DFA which recognizes the string “if” as a token
of type IF, the strings “int” and “integer” as tokens of type
NUM, and all other identifiers as tokens of type ID.

19.

(a) Given an arbitrary fixed integer d ≥ 2, construct a regular
expression r such that L(r) consists of all base d expansions
of even (positive) integers. (Thus, the alphabet consists of all
digits in base d.)

(b) Construct a DFA which recognizes every non-negative number,
expanded in base d, as EVEN or as ODD.

20.

(a) Given a regular expression r, define a regular expression ~r for
vectors (of any non-negative length) of elements of type r. The
entries of a vector are separated by commas and grouped by
parentheses.

(b) Given a DFA recognizing elements of type r, construct a DFA
which recognizes vectors of such elements.

4

(c) Can you design your DFA so as to recognize vectors whose
length is (i) 3 modulo 10? (ii) a prime?

(d) The regular expression ~~r represents vectors of vectors of ele-
ments of type r. Can you construct a regular expression [r]
for matrices (i.e., vectors whose entries are vectors of the same
length) of elements of type r?

21.

(a) For any n ≥ 0, write a regular definition for the language of
balanced parentheses of nesting level up to n.

(b) Write a computer program which, for given n, will output a
DFA for this language. The DFA should inform of the nesting
level. (Represent the DFA in any way you like – by a transition
table, a graph, etc.)

22. Write a regular definition for the language of all strings over
{a, b, . . . , z}, not containing “if” as a substring.

23. In Java, the command
a = b+++--c;

passes compilation, whereas the command
a = b+++++c;

does not. Why?

24. In a certain computer language, identifiers are strings of letters
and digits, starting with a letter, with the additional constraint that
a character should not appear more than once in the name. (A lower-
case letter and the corresponding upper-case letter are considered
as distinct.) Construct a DFA, with a minimal possible number
of states, recognizing identifiers. How many states does this DFA
consist of?

25. Consider the class of “special” NFAs discussed in class (with
an initial state having no incoming transitions, a single accepting
states with no outgoing transitions, and either a single σ-transition
or up to two ε-transitions from any of the non-accepting states).
Denoting the class by S, consider the following problem:
Given M in S, does there exist an equivalent M ′ in S having less
states than M?
Is the problem decidable?

26. A “special” NFA (see Question 25), accepting the language
L(w1|w2| . . . |wn), where w1, w2, . . . , wn are any words, is constructed
according to the algorithm discussed in class. (Here, the construc-
tion is according to the order of the characters in the expression.)

5

(a) How many states does the NFA consist of?

(b) Suppose the words wi are distinct from each other and none
of them is empty. Does the NFA above consist of the minimal
possible number of states (within the class of such NFAs)?

27. Consider the NFA

M = ({qij : 1 ≤ i ≤ m, 1 ≤ j ≤ n}, {a, b},∆, q11, qmn) ,

where

∆(qij, ε) =


{qi,j+1, qi+1,j}, 1 ≤ i ≤ m− 1, 1 ≤ j ≤ n− 1,
{qm,j+1}, i = m, 1 ≤ j ≤ n− 1,
{qi+1,n}, 1 ≤ i ≤ m− 1, j = n,
∅, i = m, j = n,

∆(qij, a) =

{
{qi,j+1}, 1 ≤ i ≤ m, 1 ≤ j ≤ n− 1,
∅, 1 ≤ i ≤ m, j = n,

∆(qij, b) =

{
{qi+1,j}, 1 ≤ i ≤ m− 1, 1 ≤ j ≤ n,
∅, i = m, 1 ≤ j ≤ n.

How many states are there in the equivalent DFA, constructed using
the algorithm discussed in class?

3 Syntactic Analysis

28. Consider the grammar G1 given by:

S → iSeS | iS | ε ,

and the grammar G2 given by:

S →M | U ,

M → iMeM | ε ,

U → iMeU | iS .

(Intuitively, you should think of these grammars as the two gram-
mars presented in class for conditional statements. Here we deal
only with occurrences of the words if and else, represented by i
and e, respectively. M and U stand for matched and unmatched,
respectively.)

(a) Prove that L(G1) = L(G2).

6

(b) Which words are obtained by a unique derivation tree in G1?

(c) Write a program that, given a word in {i, e}∗, finds the number
of derivation trees (if any) over G1 producing this word. Prove
that your algorithm works in polynomial time in the length of
the input.

(d) Prove that G2 is unambiguous.

(e) Write a program that, given a word in {i, e}∗, finds the unique
derivation sequence over G2 producing this word (and gives an
error message if the word does not belong to L(G2)).

29. Consider the following grammar, designed to solve the ambi-
guity problem of the if-then-else grammar presented in class:

stmt→ if cond then stmt | matched ,

matched→ if cond thenmatched else stmt | unconditionalStmt .

Show that the grammar is still ambiguous.

30. Consider the grammar G given by:

S → SSσ1 | SSσ2 | . . . | SSσr | σr+1 ,

where σ1, σ2, . . . , σr+1 are distinct terminals. Is the grammar unam-
biguous? If yes – prove your claim, if not – produce a word in L(G)
with two distinct derivation trees.

31. Eliminate the left recursion (direct and indirect) in the follow-
ing grammars:

(a)

S → SaS | Ab | ab ,
A→ SA | AB | ba ,
B → ABa | Bb | bab .

(b)

S → SAB | ba ,
A→ SBS | ABA | a ,
B → Sa | AS | bab .

(c)

S → Sb | a ,
A→ AbS | ba ,
B → SABA | AA | b .

7

32. Transfer the following grammars into Chomsky Normal Form
(omitting the word ε from the language if it accepted by the gram-
mar):

(a)

S → aS | bScSd | e | f .

(b)

S → aSb | A ,
A→ SS | ε .

(c)

S → BCA | c ,
A→ bAc | b .
B → cBcc | ε ,
C → aCaa | ε .

33. Suppose G is a grammar “almost” in Chomsky Normal Form,
namely all rules are either of the form A→ a or of the form A→ BC
or of the form A → BCD. We use the idea of the CYK algorithm
on this grammar directly. What will the runtime of the algorithm
be?

34. Let G be a grammar in Chomsky Normal Form.

(a) The way the CYK algorithm was presented in class, it just finds,

for any w ∈ T ∗, whether S
∗

=⇒w or not. Change the algorithm

so that, in case S
∗

=⇒w, it will construct a corresponding parse

tree. By how much does this addition change the runtime?

(b) Change the CYK algorithm so that it will return not a boolean

value, indicating whether S
∗

=⇒w or not, but an integer value,

indicating the number of parse trees producing w. Make sure
your algorithm still works in polynomial time.

(c) Consider again the previous part. Can you construct all these
parse trees in polynomial time?

(d) Design an algorithm that, for any strings α, β ∈ (N ∪ T)∗, de-

cides whether α
∗

=⇒β. What is the runtime of your algorithm?

35. Find the FIRST sets of all non-terminals and right-hand sides
of all rules for the following grammars:

(a)

8

S → aS | AS | BAb ,
A→ Aab | AB | ε ,
B → Aa | BbB | ε .

(b)

S → ABCS | SS | aba ,
A→ ACB | cb | ε ,
B → BCB | A | bc ,
C → AS | c .

(c)

S → SS | AB | c ,
A→ Aa | Aab | a | ε ,
B → bC | bB | Sb | b ,
C → cA | SC | c .

36. Find the FOLLOW sets of all non-terminals for the grammars
in Question 35.

9

