
Final #1

Mark all correct answers in each of the following questions.
Unless stated otherwise, G = (N, T,R, S) is a context-free grammar with-

out useless letters.

4. (a) If G is ambiguous, then there may exist words w ∈ T ∗ produced
by a unique parse tree.

(b) If G1, G2 are unambiguous grammars and L(G1)∩L(G2) = ∅, then
it is possible to construct an unambiguous grammar G such that
L(G) = L(G1) ∪ L(G2).

(c) Suppose Gi = (Ni, T, Ri, Si), i = 1, 2, where N1 ∩ N2 = ∅. Let
G = (N1 ∪N2 ∪{S}, T, R1 ∪R2 ∪{S → S1S2}) (where we assume
that S /∈ N1 ∪N2). (By the way, L(G) = L(G1)L(G2).) If G1 and
G2 are unambiguous, then so is G.

(d) Suppose that for each w ∈ T ∗ and A ∈ N − {S} there exists at
most one leftmost derivation which produces w from A. Suppose
also that S does not appear on the right-hand side of any rule,
namely for every A → α ∈ R (with any A ∈ N) we have α ∈
(N ∪ T − {S})∗. Then G is unambiguous.

5. (a) Suppose G is defined by the rules

S → Aab | Aba | c ,
A→ SAc | AAb | ada ,

and we employ the algorithm discussed in class for eliminating
left-recursion (with A1 = S,A2 = A). Then the grammar we
obtain contains exactly eight rules.

1

(b) Call a grammar indirectly semi-recursive (for the purposes of this
question) if there exist A ∈ N and α, β ∈ (N ∪ T)∗ such that

A
+

=⇒αAβ. If L(G) is infinite then there does not exist a grammar,

equivalent to G, that is not indirectly semi-recursive.

(c) Denote by l(G) the sum of lengths of the right-hand sides of all
rules in R, namely:

l(G) =
∑

A→α∈R

|α|.

For a grammar G with neither ε-productions nor unit productions,
let Chomsky(G) be the grammar in Chomsky Normal Form, equiv-
alent to G, constructed according to the algorithm presented in
class. Then there exists a function f : N→ N (where N denotes
the set of positive integers) such that l(Chomsky(G)) ≤ f(l(G))
for every grammar with neither ε-productions nor unit produc-
tions nor useless letters.

(d) Suppose all rules inR are of one of the three forms A→ b, A→ bC,
and A → Bc. Then a slight modification of the CYK algorithm
yields a parsing algorithm that works in time O(n2) for words on
length n.

6. (a) The number of stages (not including stage 0) in the algorithm
presented in class for computing the set FIRST is at most |T |.

(b) For A ∈ N , denote by DIRECT FOLLOW(A) the set of all letters
X ∈ N ∪ T for which R includes a rule of the form B → αAXβ
for some B ∈ N and α, β ∈ (N ∪ T)∗. Then:

FOLLOW(A) =
⋃

X∈DIRECT FOLLOW(A)

FIRST(X).

(c) If R includes the four rules A→ aB, A→ ε, B → aA, and B → ε
(in addition to other rules), then the grammar is not LL(1).

(d) If R includes the rules A → SBS and A → SbS (in addition to
other rules), and L(G) is infinite, then G is not LL(k) for any
k ≥ 1.

2

Solutions

4. (a) Ambiguity means that there are words that can be produced by
more than one parse tree. However, there may still be words
produced by a single tree. For example, the grammar defined by
the rules

S → A | a | b ,
A→ a ,

is ambiguous since the word a can be produced in two essentially
different ways, namely S=⇒a and S=⇒A=⇒a. However, there is

clearly a unique parse tree for the word b.

As a more interesting example, one may consider the grammar
with if-then and if-then-else, discussed in class. The grammar is
ambiguous, yet words without any occurrence of else are produced
by a unique parse tree, as are words with an equal number of
occurrences of if and else.

(b) The classical construction of a grammar that accepts the language
L(G1) ∪ L(G2) (obtained by an addition of a new start symbol S
and the rules S → S1 and S → S2) is easily seen to provide an
unambiguous grammar in our case.

(c) Suppose G1 and G2 are defined by the rules

S1 → a | ab ,
and

S2 → a | ba ,
respectively. Then the word aba is produced in G in two ways:
S=⇒S1S2=⇒aS2=⇒aba, and S=⇒S1S2=⇒abS2=⇒aba. Thus,

while both G1 and G2 are clearly unambiguous, G is ambiguous.

(d) The grammar defined by the rules

S → A | a ,
A→ a ,

satisfies the required condition, yet it is obviously ambiguous as
the word a may be obtained in two ways.

Thus, (a) and (b) are true.

3

5. (a) The rules for S do not have left-recursion. For A, we first need
to replace the rule A→ SAc by rules whose right-hand side does
not start with the letter S. We obtain the following rules for A:

A→ AabAc | AbaAc | cAc | AAb | ada .
Now we need to get rid of the direct left-recursion we still have
for A. We add a new non-terminal A′, and instead of the five
above rules for A obtain the rules

A→ cAcA′ | adaA′ ,
A′ → abAcA′ | baAcA′ | AbA′ | ε .

The new grammar has altogether nine rules.

(b) Consider any parse tree corresponding to a grammar that is not
indirectly semi-recursive. Take any path from the root to a leaf of
the tree. The assumed property of the grammar implies that all
nodes along the way have distinct labels. Hence the height of the
tree is bounded by |N |. It follows that L(G) is finite.

(c) In the process of passing from G to Chomsky(G), we first add a
rule Ca → a for each terminal a. Next we replace each rule of
the form A → B1B2 . . . Bk with right-hand side of length k ≥ 3
by k − 1 rules with right-hand sides of length 2 each. It follows
that l(Chomsky(G)) ≤ |T | + 2l(G). Since all letters are useful,
each terminal appears on the right-hand side of at least one rule,
and consequently |T | is bounded above by l(G). It follows that
l(Chomsky(G)) ≤ 3l(G), so that we may take f as the function
given by f(m) = 3m.

(d) We proceed as in the CYK algorithm. This time, the ques-
tion for which non-terminals A and subwords aiai+1 . . . aj of the

given input word a1a2 . . . an we have A
∗

=⇒aiai+1 . . . aj reduces to a

bounded number of questions of the same form, with aiai+1 . . . aj
replaced by one of the subwords aiai+1 . . . aj−1 and ai+1ai+2 . . . aj,
each of length j − i. Thus, for each k ≤ n, we answer the above
question for words of length k in time O(k). Going over all k up
to n, we complete the work in time O(n2).

Thus, (b), (c) and (d) are true.

4

6. (a) At the first stage, we find that a terminal a belongs to the FIRST
set of a non-terminal A if A → αaβ ∈ R for some α, β with
Nullable(α). At the second stage we find the same if A→ αBβ ∈
R, where FIRST(B) is known to include the terminal a from the
preceding stage and Nullable(α), and so forth. It follows that the
number of stages is bounded above by |N |. This bound cannot be
reduced in general, as the grammar defined by the rules

S → A1 ,

A1 → A2 ,

. . .

Am−2 → Am−1 ,

Am−1 → a | ε ,
shows.

(b) In the proposed equality, indeed every letter belonging to the
right-hand side belongs to the left-hand side too. In fact, let a ∈
FIRST(X), say X

∗
=⇒γaδ for some γ, δ ∈ (N∪T)∗ with Nullable(γ),

where X ∈ DIRECT FOLLOW(A). Since all letters are useful, for
suitable α′, β′ ∈ (N ∪ T)∗ we have

S
∗

=⇒α′Bβ′=⇒α′αAXββ′ ∗=⇒α′αAγaδββ′ ∗=⇒α′αAaδββ′,

so that a ∈ FOLLOW(A).

However, the inverse inclusion is false in general. If Nullable(X),
then elements of FIRST(β) also belong to FOLLOW(A). For ex-
ample, consider the grammar defined by the rules

S → ABC ,

A→ a ,

B → b | ε ,
C → c .

One verifies easily that FOLLOW(A) = {b, c}, while⋃
X∈DIRECT FOLLOW(A)

FIRST(X) = {b}.

(c) It is easy to see that the grammar defined by the rules

5

S → A ,

A→ aB | ε ,
B → aA | ε .

is LL(1).

(d) Let k ≥ 1 be arbitrary and fixed. We claim that G is not LL(k).
Since L(G) is infinite, we may find a word u ∈ L(G) with |u| ≥ k.
Consider a sequence of derivations of the form

S
∗

=⇒vAβ=⇒vSBSβ ∗
=⇒vuBSβ ∗

=⇒vuw

for some v, u, w ∈ T ∗ and β ∈ (N ∪ T)∗. Now suppose we have
to parse the input word vuw. After getting the sentential form
vAβ, the next k letters of the input that we have to match are the
first k letters of u. Clearly, both rules A → SBS and A → SbS
are equally suitable to be used at this stage (as far as the next k
letters of the input are concerned). Hence G is not LL(k).

Thus, only (d) is true.

6

