Final \#1

Mark all correct answers in each of the following questions.
Unless stated otherwise, $G=(N, T, R, S)$ is a context-free grammar without useless letters.
4. (a) If G is ambiguous, then there may exist words $w \in T^{*}$ produced by a unique parse tree.
(b) If G_{1}, G_{2} are unambiguous grammars and $L\left(G_{1}\right) \cap L\left(G_{2}\right)=\emptyset$, then it is possible to construct an unambiguous grammar G such that $L(G)=L\left(G_{1}\right) \cup L\left(G_{2}\right)$.
(c) Suppose $G_{i}=\left(N_{i}, T, R_{i}, S_{i}\right), i=1,2$, where $N_{1} \cap N_{2}=\emptyset$. Let $G=\left(N_{1} \cup N_{2} \cup\{S\}, T, R_{1} \cup R_{2} \cup\left\{S \rightarrow S_{1} S_{2}\right\}\right)$ (where we assume that $S \notin N_{1} \cup N_{2}$). (By the way, $L(G)=L\left(G_{1}\right) L\left(G_{2}\right)$.) If G_{1} and G_{2} are unambiguous, then so is G.
(d) Suppose that for each $w \in T^{*}$ and $A \in N-\{S\}$ there exists at most one leftmost derivation which produces w from A. Suppose also that S does not appear on the right-hand side of any rule, namely for every $A \rightarrow \alpha \in R$ (with any $A \in N$) we have $\alpha \in$ $(N \cup T-\{S\})^{*}$. Then G is unambiguous.
5. (a) Suppose G is defined by the rules

$$
\begin{aligned}
& S \rightarrow A a b|A b a| c \\
& A \rightarrow S A c|A A b| a d a
\end{aligned}
$$

and we employ the algorithm discussed in class for eliminating left-recursion (with $A_{1}=S, A_{2}=A$). Then the grammar we obtain contains exactly eight rules.
(b) Call a grammar indirectly semi-recursive (for the purposes of this question) if there exist $A \in N$ and $\alpha, \beta \in(N \cup T)^{*}$ such that $A \xlongequal{+} \alpha A \beta$. If $L(G)$ is infinite then there does not exist a grammar, equivalent to G, that is not indirectly semi-recursive.
(c) Denote by $l(G)$ the sum of lengths of the right-hand sides of all rules in R, namely:

$$
l(G)=\sum_{A \rightarrow \alpha \in R}|\alpha| .
$$

For a grammar G with neither ε-productions nor unit productions, let Chomsky (G) be the grammar in Chomsky Normal Form, equivalent to G, constructed according to the algorithm presented in class. Then there exists a function $f: \mathbf{N} \rightarrow \mathbf{N}$ (where \mathbf{N} denotes the set of positive integers) such that $l($ Chomsky $(G)) \leq f(l(G))$ for every grammar with neither ε-productions nor unit productions nor useless letters.
(d) Suppose all rules in R are of one of the three forms $A \rightarrow b, A \rightarrow b C$, and $A \rightarrow B c$. Then a slight modification of the CYK algorithm yields a parsing algorithm that works in time $O\left(n^{2}\right)$ for words on length n.
6. (a) The number of stages (not including stage 0) in the algorithm presented in class for computing the set FIRST is at most $|T|$.
(b) For $A \in N$, denote by $\operatorname{DIRECT} \operatorname{FOLLOW}(A)$ the set of all letters $X \in N \cup T$ for which R includes a rule of the form $B \rightarrow \alpha A X \beta$ for some $B \in N$ and $\alpha, \beta \in(N \cup T)^{*}$. Then:

$$
\operatorname{FOLLOW}(A)=\bigcup_{X \in \operatorname{DIRECT} F \operatorname{FOLLOW}(A)} \operatorname{FIRST}(X)
$$

(c) If R includes the four rules $A \rightarrow a B, A \rightarrow \varepsilon, B \rightarrow a A$, and $B \rightarrow \varepsilon$ (in addition to other rules), then the grammar is not $L L(1)$.
(d) If R includes the rules $A \rightarrow S B S$ and $A \rightarrow S b S$ (in addition to other rules), and $L(G)$ is infinite, then G is not $L L(k)$ for any $k \geq 1$.

Solutions

4. (a) Ambiguity means that there are words that can be produced by more than one parse tree. However, there may still be words produced by a single tree. For example, the grammar defined by the rules

$$
\begin{aligned}
& S \rightarrow A|a| b, \\
& A \rightarrow a,
\end{aligned}
$$

is ambiguous since the word a can be produced in two essentially different ways, namely $S \Longrightarrow a$ and $S \Longrightarrow A \Longrightarrow a$. However, there is clearly a unique parse tree for the word b.
As a more interesting example, one may consider the grammar with if-then and if-then-else, discussed in class. The grammar is ambiguous, yet words without any occurrence of else are produced by a unique parse tree, as are words with an equal number of occurrences of if and else.
(b) The classical construction of a grammar that accepts the language $L\left(G_{1}\right) \cup L\left(G_{2}\right)$ (obtained by an addition of a new start symbol S and the rules $S \rightarrow S_{1}$ and $S \rightarrow S_{2}$) is easily seen to provide an unambiguous grammar in our case.
(c) Suppose G_{1} and G_{2} are defined by the rules

$$
S_{1} \rightarrow a \mid a b
$$

and

$$
S_{2} \rightarrow a \mid b a,
$$

respectively. Then the word $a b a$ is produced in G in two ways: $S \Longrightarrow S_{1} S_{2} \Longrightarrow a S_{2} \Longrightarrow a b a$, and $S \Longrightarrow S_{1} S_{2} \Longrightarrow a b S_{2} \Longrightarrow a b a$. Thus, while both G_{1} and G_{2} are clearly unambiguous, G is ambiguous.
(d) The grammar defined by the rules

$$
\begin{aligned}
& S \rightarrow A \mid a, \\
& A \rightarrow a,
\end{aligned}
$$

satisfies the required condition, yet it is obviously ambiguous as the word a may be obtained in two ways.
Thus, (a) and (b) are true.
5. (a) The rules for S do not have left-recursion. For A, we first need to replace the rule $A \rightarrow S A c$ by rules whose right-hand side does not start with the letter S. We obtain the following rules for A :

$$
A \rightarrow A a b A c|A b a A c| c A c|A A b| a d a
$$

Now we need to get rid of the direct left-recursion we still have for A. We add a new non-terminal A^{\prime}, and instead of the five above rules for A obtain the rules

$$
\begin{aligned}
& A \rightarrow c A c A^{\prime} \mid a d a A^{\prime} \\
& A^{\prime} \rightarrow a b A c A^{\prime}\left|b a A c A^{\prime}\right| A b A^{\prime} \mid \varepsilon
\end{aligned}
$$

The new grammar has altogether nine rules.
(b) Consider any parse tree corresponding to a grammar that is not indirectly semi-recursive. Take any path from the root to a leaf of the tree. The assumed property of the grammar implies that all nodes along the way have distinct labels. Hence the height of the tree is bounded by $|N|$. It follows that $L(G)$ is finite.
(c) In the process of passing from G to Chomsky (G), we first add a rule $C_{a} \rightarrow a$ for each terminal a. Next we replace each rule of the form $A \rightarrow B_{1} B_{2} \ldots B_{k}$ with right-hand side of length $k \geq 3$ by $k-1$ rules with right-hand sides of length 2 each. It follows that $l(\operatorname{Chomsky}(G)) \leq|T|+2 l(G)$. Since all letters are useful, each terminal appears on the right-hand side of at least one rule, and consequently $|T|$ is bounded above by $l(G)$. It follows that $l($ Chomsky $(G)) \leq 3 l(G)$, so that we may take f as the function given by $f(m)=3 m$.
(d) We proceed as in the CYK algorithm. This time, the question for which non-terminals A and subwords $a_{i} a_{i+1} \ldots a_{j}$ of the given input word $a_{1} a_{2} \ldots a_{n}$ we have $A \xlongequal{*} a_{i} a_{i+1} \ldots a_{j}$ reduces to a bounded number of questions of the same form, with $a_{i} a_{i+1} \ldots a_{j}$ replaced by one of the subwords $a_{i} a_{i+1} \ldots a_{j-1}$ and $a_{i+1} a_{i+2} \ldots a_{j}$, each of length $j-i$. Thus, for each $k \leq n$, we answer the above question for words of length k in time $O(k)$. Going over all k up to n, we complete the work in time $O\left(n^{2}\right)$.
Thus, (b), (c) and (d) are true.
6. (a) At the first stage, we find that a terminal a belongs to the FIRST set of a non-terminal A if $A \rightarrow \alpha a \beta \in R$ for some α, β with Nullable(α). At the second stage we find the same if $A \rightarrow \alpha B \beta \in$ R, where $\operatorname{FIRST}(B)$ is known to include the terminal a from the preceding stage and $\operatorname{Nullable}(\alpha)$, and so forth. It follows that the number of stages is bounded above by $|N|$. This bound cannot be reduced in general, as the grammar defined by the rules

$$
\begin{aligned}
& S \rightarrow A_{1}, \\
& A_{1} \rightarrow A_{2}, \\
& \ldots \\
& A_{m-2} \rightarrow A_{m-1}, \\
& A_{m-1} \rightarrow a \mid \varepsilon,
\end{aligned}
$$

shows.
(b) In the proposed equality, indeed every letter belonging to the right-hand side belongs to the left-hand side too. In fact, let $a \in$ FIRST (X), say $X \xlongequal{*} \gamma a \delta$ for some $\gamma, \delta \in(N \cup T)^{*}$ with Nullable (γ), where $X \in \operatorname{DIRECT} F O L L O W(A)$. Since all letters are useful, for suitable $\alpha^{\prime}, \beta^{\prime} \in(N \cup T)^{*}$ we have

$$
S \xlongequal{*} \alpha^{\prime} B \beta^{\prime} \Longrightarrow \alpha^{\prime} \alpha A X \beta \beta^{\prime} \xlongequal{*} \alpha^{\prime} \alpha A \gamma a \delta \beta \beta^{\prime} \xlongequal{*} \alpha^{\prime} \alpha A a \delta \beta \beta^{\prime},
$$

so that $a \in \operatorname{FOLLOW}(A)$.
However, the inverse inclusion is false in general. If Nullable (X), then elements of $\operatorname{FIRST}(\beta)$ also belong to $\operatorname{FOLLOW}(A)$. For example, consider the grammar defined by the rules

$$
\begin{aligned}
& S \rightarrow A B C, \\
& A \rightarrow a, \\
& B \rightarrow b \mid \varepsilon, \\
& C \rightarrow c .
\end{aligned}
$$

One verifies easily that $\operatorname{FOLLOW}(A)=\{b, c\}$, while

(c) It is easy to see that the grammar defined by the rules

$$
\begin{aligned}
& S \rightarrow A \\
& A \rightarrow a B \mid \varepsilon, \\
& B \rightarrow a A \mid \varepsilon
\end{aligned}
$$

is $L L(1)$.
(d) Let $k \geq 1$ be arbitrary and fixed. We claim that G is not $L L(k)$. Since $L(G)$ is infinite, we may find a word $u \in L(G)$ with $|u| \geq k$. Consider a sequence of derivations of the form

$$
S \xlongequal{*} v A \beta \Longrightarrow v S B S \beta \stackrel{*}{\Longrightarrow} v u B S \beta \xlongequal{*} v u w
$$

for some $v, u, w \in T^{*}$ and $\beta \in(N \cup T)^{*}$. Now suppose we have to parse the input word vuw. After getting the sentential form $v A \beta$, the next k letters of the input that we have to match are the first k letters of u. Clearly, both rules $A \rightarrow S B S$ and $A \rightarrow S b S$ are equally suitable to be used at this stage (as far as the next k letters of the input are concerned). Hence G is not $L L(k)$.
Thus, only (d) is true.

