
Review Questions

Mark the correct answer in each part of the following questions.

1. Let n be an arbitrary fixed even positive integer. We are interested in
the collection S of subsets of {1, 2, . . . , n}, including at most one of the
two numbers 1 and n, at most one of the numbers 2 and n − 1, ..., at
most one of the numbers n/2 and n/2 + 1.

(a) If we go over all subsets of {1, 2, . . . , n} according to the lexico-
graphic order, then the number of subsets we encounter before we
get for the first time a subset outside S is

(i) 2n/2 +O(1).

(ii) 3 · 2n/2−1 +O(1).

(iii) 2n/2+1 +O(1).

(iv) 3 · 2n/2 +O(1).

(v) none of the above.

(b) If we go over all subsets of {1, 2, . . . , n} according to the Gray
code, then the number of subsets we encounter before we get for
the first time a subset outside S is

(i) 2n/2 +O(1).

(ii) 3 · 2n/2−1 +O(1).

(iii) 2n/2+1 +O(1).

(iv) 3 · 2n/2 +O(1).

(v) none of the above.

(c) We consider now possible ways of enumerating the elements of S
as fast as possible.
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(i) We can enumerate the subsets in S with minimal changes.
Moreover, it is possible to enumerate them along a Hamilto-
nian circuit. (Namely, from the last subset in the cycle it is
possible to move to the first one by a minimal change.)

(ii) We can enumerate the subsets in S with minimal changes.
Both ∅ and {1, 2, . . . , n/2} may be taken as the initial points.
However, it is impossible to enumerate them along a Hamil-
tonian circuit.

(iii) We can enumerate the subsets in S with minimal changes. It
is possible to have ∅ as the initial point, but not {1, 2, . . . , n/2}.

(iv) We can enumerate the subsets in S with minimal changes.
It is possible to have {1, 2, . . . , n/2} as the initial point, but
not ∅.

(v) None of the above.

(d) We want to select a uniformly random element of S. Consider the
following two algorithms:

• A1 – select a uniformly random subset of {1, 2, . . . , n} until
you get a set belonging to S.

• A1 – select a uniformly random subset S of {1, 2, . . . , n}. For
each i between 1 and n/2, for which both i and n + 1 − i
belong to S, do the following: With probability 1/2 remove i
from S, and with the remaining probability remove n+ 1− i
from it.

(i) A1 is correct, but requires selecting on the average (4/3)n/2

subsets to get a subset in S. A2 selects subsets belonging to S
only, and each such subset has a positive probability of being
selected, but the probabilities are not as required.

(ii) A1 is correct, but requires selecting on the average select 3n/2

subsets to get a subset in S. A2 selects subsets belonging to S
only, and each such subset has a positive probability of being
selected, but the probabilities are not as required.

(iii) Both A1 and A2 are correct, but A1 is much slower than A2

on the average.

(iv) A1 is much slower than A2 on the average, but it does not
matter as both methods are incorrect.
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(v) None of the above.

2. Here, we develop a recurrence formula for the number Tn of trees on n
labeled vertices. (This formula may be used in turn to provide yet an-
other proof of Cayley’s formula, but we do not deal with this derivation
here.)

Given a tree, and any edge in the tree, by removing this edge we obtain
two non-empty trees – one on some set of k vertices containing the
vertex 1 (where 1 ≤ k ≤ n − 1), and another on the complementary
set of vertices. When going over all pairs (t, e), consisting of a tree t
on the given n vertices and an edge e out of the n − 1 edges of t, we
get (by removing e from t) each pair of trees on complementary sets
of vertices several times. By counting the occurrences of each pair, we
obtain the recurrence

(i)

(n− 1)Tn =
n−1∑
k=1

(
n− 1

k − 1

)
(k − 1)(n− k)TkTn−k, n ≥ 2,

where T1 = 1.

(ii)

(n− 1)Tn =
n−1∑
k=1

(
n− 1

k − 1

)
(k − 1)(n− k + 1)TkTn−k, n ≥ 2,

where T1 = 1.

(iii)

(n− 1)Tn =
n−1∑
k=1

(
n− 1

k − 1

)
k(n− k)TkTn−k, n ≥ 2,

where T1 = 1.

(iv)

(n− 1)Tn =
n−1∑
k=1

(
n− 1

k − 1

)
k(n− k + 1)TkTn−k, n ≥ 2,

where T1 = 1.
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(v) none of the above.

3. Recall that we denoted partitions of integers in two ways. The “lazy”
notation is of the form

n = r1 + r1 + . . .+ r1 + r2 + r2 + . . .+ r2 + . . .+ rl + rl + . . .+ rl,

and the “economic” form

n = m1r1 +m2r2 + . . .+mlrl,

where each distinct number ri in the partition is listed but once, along
with its multiplicity mi. The integers ri are listed in decreasing order.
We may measure the distance between two partitions of the same num-
ber in two ways, depending on the representation. When representing
the partitions the lazy way, we drop equal ri-s from the partitions, and
count the remaining parts in the two partitions together. (For exam-
ple, the distance between the partitions 35 = 10 + 10 + 10 + 5 and
35 = 10 + 10 + 3 + 3 + 3 + 3 + 3 is 7.) When representing the partitions
the economic way, we drop equal pairs (ri,mi) and count the remain-
ing parts in the two partitions together. (For example, the distance
between the partitions 35 = 3 · 10 + 1 · 5 and 35 = 2 · 10 + 5 · 3 is 4.)

We would like to know how large the distance may be in the worst case
between successive partitions in the dictionary order.

(i) The distance when representing the partitions either way is O(1).

(ii) The distance when representing the partitions the lazy way is
O(1), and when representing them the economic way it is Ω(n).
(Namely, there exists a fixed δ > 0 such that, for each sufficiently
large n, there are two successive partitions of n, the distance be-
tween which is at least δn.)

(iii) The distance when representing the partitions the lazy way is
Ω(n), and when representing them the lazy way is O(1).

(iv) The distance when representing the partitions either way is Ω(n).

(v) none of the above.

4



4. Consider the family of Young Tableaux, whose shape consists of one
row of length n+ 1 and n rows of length 1. Unlike what we have done
in class, we fill the shape with numbers from 0 to 2n (instead of 1 to
2n+ 1). In the following, n will be an arbitrary fixed sufficiently large
integer.

Notice that, when going over all Young tableaux of the given shape,
the set of numbers in the first column, excluding the 0 at the top left
square, ranges over all subsets of size n of {1, 2, . . . , 2n}.

(a)

(i) The number of tableaux in which the number 1 is in the first
column is 1

2
·
(
2n
n

)
, as is the number of tableaux in which the

number 2n is in the first column. The number of tableaux in
which both 1 and 2n are in the first column is 1

4
·
(
2n
n

)
.

(ii) The number of tableaux in which the number 1 is in the first
column is 1

2
·
(
2n
n

)
, as is the number of tableaux in which the

number 2n is in the first column. The number of tableaux
in which both 1 and 2n are in the first column is less than
1
4
·
(
2n
n

)
.

(iii) The number of tableaux in which the number 1 is in the first
column is 1

2
·
(
2n
n

)
, as is the number of tableaux in which the

number 2n is in the first column. The number of tableaux in
which both 1 and 2n are in the first column is greater than
1
4
·
(
2n
n

)
.

(iv) There exists a unique pair of integers k, l, with 1 ≤ k < l ≤
2n, such that both k and l are in the first column in exactly
1
4
·
(
2n
n

)
tableaux. However, (k, l) 6= (1, 2n).

(v) None of the above.

(b) When we go over all Young tableaux of the given shape according
to the order suggested in class, the set of numbers in the first row
goes over all subsets of size n of {1, 2, . . . , 2n}
(i) according to the lexicographic order.

(ii) with minimal changes, in the same order we went over all
subsets of size k of {1, 2, . . . , n}.

(iii) with minimal changes, but not in the same order we went
over all subsets of size k of {1, 2, . . . , n}.
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(iv) with changes very far from being minimal. In fact, it may
happen that all 2n numbers from 1 to 2n change their location
when passing from some table to the next.

(v) none of the above.

Solutions

1. (a) During the first 2n/2 steps, we go over all subsets of {1, 2, . . . , n/2},
so that we have sets in S. At that step, the number n/2+1 appears
for the first time in the sets we encounter. It will take another
2n/2−1 steps until the number n/2 joins the set again. This will
be the first set we get which is outside S.

Thus, (ii) is true.

(b) Recall that, when using the Gray code, the sequence determining
which bit changes at each step consists of 1-s at all odd locations,
of 2-s at all locations divisible by 2 but not by 4, of 3-s at all
locations divisible by 4 but not by 8, and so forth. The first time
a number k joins the set is at the 2k−1-th step. At this point, all
bits from 1 to k − 2 have been changed an even number of times,
and hence the corresponding numbers are not in the set. However,
bit k−1 has been changed exactly once, so that the number k−1
is in the set. For k = n/2 + 1, this means that the the set we
have after 2n/2 steps is {n/2, n/2 + 1}. This is the first set we see
outside S.

Thus, (i) is true.

(c) For each pair of i and n + 1 − i, a set in S may contain either
none of them, or only i or only n+ 1− i, altogether 3 possibilities.
Thus, S consists of 3n/2 sets. We claim that, structurally, S is a
discrete n/2-dimensional cube with sides of length 3, as follows
(Remark: Compare the situation with that you had in homework
problem 9.) Denote B = {−1, 0, 1}n/2. Define a 1-1 mapping f
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from S onto B as follows. For 1 ≤ i ≤ n/2, if i ∈ S then the
i-th component of f(S) is −1, if n + 1 − i ∈ S then it is 1, and
if i, n + 1 − i /∈ S then it is 0. A minimal change of a set S ∈ S
corresponds to changing the corresponding component of f(S) by
1. Hence the question may be rephrased in terms of going over B
with minimal changes.

By induction, one sees that it is possible to go over B with minimal
changes, starting at (−1,−1, . . . ,−1) and ending at (1, 1, . . . , 1).
The proof is by induction on the dimension m (which, in our
case, is n/2). For m = 1 we have a path of length 3, and
the claim is trivial. Assuming the claim is correct for dimen-
sion m − 1, we go over B = {−1, 0, 1}m as follows. Starting
at (−1,−1, . . . ,−1), we go over {−1, 0, 1}m−1 × {−1}, ending at
(1, 1, . . . , 1,−1). Then we move to (1, 1, . . . , 1, 0). Using again
the induction hypothesis, we go to (−1,−1, . . . ,−1, 0). We move
to (−1,−1, . . . ,−1, 1), and then using the induction hypothesis a
third time, complete the traversal at (1, 1, . . . , 1). Note that we
started from f({1, 2, . . . , n/2}).
However, we cannot start from ∅. In fact, by induction we show
that, out of the 3n/2 points of B, there are (3n/2 + 1)/2 whose
coordinate sum is odd, and only (3n/2 − 1)/2 whose coordinate
sum is even. As we move, we always move from a point with even
coordinate sum to one with an odd coordinate sum and vice versa.
Hence we must start at the larger set.

Thus, (iv) is true.

(d) A1 is correct in general. Given an algorithm for drawing uniformly
from some set S, and being asked to draw uniformly from some
subset T of S, one may draw from S until obtaining an element
of T . The random variable, counting the drawings until an element
of T is drawn, is G(|T |/|S|)-distributed. Hence the average num-
ber of drawings is |S|/|T |, which in our case is 2n/3n/2 = (4/3)n/2.

A2 indeed may select any set in S already at its first stage. How-
ever, it selects sets with incorrect probabilities. For example, ∅ is
drawn by A2 with probability 1/2n instead of 1/3n/2.

Thus, (i) is true.
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2. The other k−1 vertices in the connected component of vertex 1 may be
chosen in

(
n−1
k−1

)
ways. For each of these, the connected component of

vertex 1 may be chosen in Tk ways, and the other connected component
in Tn−k ways. The edge deleted to get these two components may be
any edge connecting a vertex in one component with a vertex in the
other, and hence may be chosen in k(n− k) ways.

Thus, (iii) is true.

3. The distance when representing the partitions the lazy way is Ω(n).
For example, for even n, the partition following

n = 2 + 2 + . . .+ 2

is
n = 3 + 1 + 1 + . . .+ 1.

The distance between the two partitions is 3n/2− 2.

The distance when representing the partitions the economic way is
O(1). In fact, either the last pair is removed, or the last two are.
Instead, we get at most two other pairs. Hence, the distance is at
most 4.

Thus, (iii) is true.

4. (a) By symmetry, each number between 1 and 2n appears the same
number of times in the first row and in the first column. Hence it
appears 1

2
·
(
2n
n

)
times in the first column.

When we take any k, l between 1 and 2n, the number of times
they appear simultaneously in the first column is the number of
subsets of size n of {1, 2, . . . , 2n}, containing both of k and l,
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namely
(
2n−2
n−2

)
. Now(

2n− 2

n− 2

)
=

(2n− 2)!

n!(n− 2)!

=
n(n− 1)

2n(2n− 1)
· (2n)!

n!2

=
n− 1

2(2n− 1)
·
(

2n

n

)

<
1

4
·
(

2n

n

)
.

Thus, (ii) is true.

(b) We do not go over the sets according to the lexicographic order.
If we did, then during all the first 1

2
·
(
2n
n

)
steps, the number 1

would be in the first column, and thereafter would never be there.
However, in all

(
2n−2
n−1

)
steps when 1 is in the first row and 2 in the

first column, 1 moves right away to the first column.

The changes are far from being minimal. When the first row con-
tains the numbers 1, 2, . . . , n− 1, 2n and the first column contains
n, n+ 1, . . . , 2n− 1, all numbers (except for 0) change their loca-
tions.

Thus, (iv) is true.
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