
Combinatorial Algorithms

Exercises

1 Generation of Basic Combinatorial Objects

1.1 Basic Examples

1. Let T be an arbitrary tree on n vertices.

(a) What is the size of a maximum cut in T? How many cuts attain
this maximal size?

(b) How is the size of a random cut (i.e., a cut obtained by let-
ting each vertex belong to the set with a probability of 1/2,
independently of other vertices) distributed?

2. We choose a random graph G, using the G(n, p) model. Namely,
we start with a vertex set {v1, v2, . . . , vn} of size n, and let each
(vi, vj) with i 6= j be an edge with probability p. Now we choose a
random cut. Find the expected value of its size.

3. Consider the sum: ∑
(ε1,...,εn)∈{0,1}n

f(ε1, . . . , εn).

(a) Show that it may be calculated in O(n) time in each of the
following cases:

(i) f(ε1, . . . , εn) = c1ε1+. . .+cnεn for some constants c1, . . . , cn.

(ii) f(ε1, . . . , εn) = ac1ε1+...+cnεn for some constants a > 0 and
c1, . . . , cn.

(iii) f(ε1, . . . , εn) = cos(c1ε1 + . . . + cnεn) for some constants
c1, . . . , cn. (Hint: cos θ = (eiθ + e−iθ)/2.)
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(b) How fast can you calculate the sum above if f(ε1, . . . , εn) =
P (c1ε1 + . . . + cnεn) for some polynomial P and constants
c1, . . . , cn?

4. Put:

Mn =
1

2n

∑
(ε1,...,εn)∈{0,1}n

√√√√ n∑
i=1

εi .

(a) Express Mn is the form Mn = E(h(X)), where X is a random
variable whose distribution belongs to some well-known family
of distributions and h : R−→R is a suitable function.

(b) Use the inequality E2(Y ) ≤ E(Y 2), which holds for any random

variable Y , to deduce that Mn ≤
√
n/2 .

(c) Show that Mn =
√

n
2
· (1 − o(1)). (Hint: Use Chebyshev’s

inequality to show that for “most” n-tuples (ε1, . . . , εn) we have∑n
i=1 εi >

n
2
− n2/3 .)

1.2 Generation of Subsets

5. We need to go over a certain family of subsets of {a1, . . . , an}.
The following algorithm has been suggested: Go over all subsets
using the binary expansion approach, and for each of them test
whether it belongs to the required family or not. Find the time
complexity of the algorithm, and suggest improvements to the algo-
rithm if possible, if the family consists of all

(a) subsets of even size;

(b) subsets of size bn/2c;

(c) subsets not containing adjacent elements (i.e., if ai belongs to
the subset for some i, then ai+1 does not).

6. In our construction of a Gray code of order n, we may order the
coordinates in any way, which gives in principle n! Gray codes. Are
these codes all distinct from each other?

7. Consider our construction of the Gray code G(n). Design an
efficient algorithm (polynomial in n) that, given an integer i in the
range [0, 2n − 1], finds the ith vector Gi in the code.

8. Consider the Tower of Hanoi Problem. Let Mn be the sequence
of length 2n − 1 recording which disk moves at each step of the
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process if there are n disks. Prove that Mn = Tn, where Tn is the
sequence, introduced in class, of bits changing when going over all
elements of {0, 1}n by the Gray code.

9. Consider the set

B = {0, 1, . . . , d1 − 1} × {0, 1, . . . , d2 − 1} × . . .× {0, 1, . . . , dk − 1},

where d1, d2, . . . , dk ≥ 2 are integers. Two elements (x1, . . . , xk)
and (y1, . . . , yk) in B are adjacent if they are at a distance of 1
apart when we consider the elements in each coordinate j to ordered
cyclically. Namely, (x1, . . . , xk) and (y1, . . . , yk) in B are adjacent if
yl = xl±1(mod dl) for some 1 ≤ l ≤ k and yi = xi for every i 6= l. A
Gray code for B is a sequence of elements of B, containing a unique
occurrence of each element of B, in which consecutive entries are
adjacent.

(a) Show that, for every k-tuple (d1, . . . , dk), the set B admits a
Gray code.

(b) Characterize those k-tuples for which B admits a Gray code
with the additional property that the last element of the se-
quence is adjacent to the first.

10. The solution presented in class to the problem of selecting a
random subset of an n-element set (or, equivalently, a sequence of
length n over {0, 1}) involves n selections of random numbers. The
following algorithm, which requires a single selection of a random
number, has been suggested: Select a random number r ∈ [0, 1),
multiply it by 2n and take the integer part s = b2nrc. The bits of s
form a random sequence as required.

(a) Is the algorithm theoretically correct?

(b) What do you expect the algorithm to yield in practice for large
n (say, n = 100)?

1.3 Generation of Permutations

11. Let P be an arbitrary fixed subset of the set of all permutations
of {1, 2, . . . , n}. We want to design an algorithm which, given a
permutation σ, returns the smallest permutation (according to the
lexicographic order) in P which is greater or equal to σ (and returns
the smallest permutation in P if σ is greater than all elements of
P ).
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(a) The following algorithm has been suggested: Start with π = σ.
While π /∈ P , replace π by its successor. Analyze this algorithm
in the average case and the worst case if P is the set

(i) Dn of all derangements (permutations σ with σ(i) 6= i for
each i);

(ii) NDn of all non-derangements.

(b) Suggest worst-case polynomial time algorithms for the problem
for both Dn and NDn. Analyze their performance.

12. A permutation σ = (σ1, σ2, . . . , σn) is cup-shaped if σ1 > σ2 >
. . . > σk < σk+1 < . . . < σn for some 1 ≤ k ≤ n. Design an
algorithm which goes over all cup-shaped permutations in linear
time (in the number of such permutations).

13. In the algorithm for traversing the set of all permutations with
minimal changes, presented in class, at each stage exactly two ele-
ments change their locations. How many elements on the average
(asymptotically) change their locations at each stage in the algo-
rithm which traverses the permutations in lexicographic order?

14. Which permutation is encountered last when we traverse all
permutations with minimal changes, according to the algorithm pre-
sented in class?

1.4 The Coupon Collector’s Problem

15. The three algorithms below have been suggested for selecting
a random permutation of 1, 2, . . . , n. For each of them, determine
whether it is correct (i.e., chooses each permutation with the same
probability 1/n!) and, if so, find the average number of selections
of random integers required to obtain a random permutation. How
does this average behave as n→∞?

(a) Choose n random integers between 1 and n until the chosen
n-tuple forms a permutation.

(b) We need to select σ1, σ2, . . . , σn. The numbers are selected one
by one. At the k-th stage, k = 1, 2, . . . , n, select a random
integer between 1 and n repeatedly until it is distinct from all
those selected before, and set σk as this integer.

(c) Start with the permutation (1, 2, . . . , n). Repeatedly select two
random integers i and j between 1 and n, and swap σi and σj.
Repeat this procedure l times, where l is sufficiently large.
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16.

(a) How many children does a family have on the average until it
has both a boy and a girl?

(b) Due to the low birthrate in Europe, the European Community
is considering special benefits to families with at least k boys
and l girls (where k and l are still to be determined). Denote
by ckl the number of children a family will have on the average
to meet this criterion. Find a recurrence formula for ckl.

17.

(a) Find the average number of coupons drawn in the Coupon
Collector’s Problem if n = 2 and the probabilities of getting the
two coupon types are not equal, but are rather p and q = 1−p.

(b) Same for n = 3 and probabilities p1, p2, p3 (with p1+p2+p3 = 1).

1.5 Generation of Subsets of a Fixed Size

18. Suppose we want to go over the set of all subsets of size k of
{1, 2, . . . , n} (where 1 ≤ k ≤ n − 1) with minimal changes. How-
ever, we restrict the notion of a minimal change to refer only to
interchanges of consecutive numbers, i.e., where some number s is
removed from the subset and s+ 1 is added or vice versa.

(a) Show that, if n is odd and
(
n
k

)
is even, then it is impossible to

go over the set with minimal changes. (Hint: How many leaves
can a graph with a Hamiltonian path have?)

(b) Show that there exist infinitely many pairs (n, k) for which it
is possible to go over the set with minimal changes.

19. Consider the set of all subsets of size either k or k + 1 of a set
of size n. A minimal change of a subset consists of either removing
an element from the subset or adjoining an element to it.

(a) Prove that, if n ≥ 3 and n 6= 2k + 1, it is impossible to go over
the set with minimal changes.

(b) Show that, for (n, k) = (1, 0), (2, 0), (3, 1), (5, 2), it is indeed
possible to go over the set with minimal changes.

(c) Let n = 2k+ 1 ≥ 3. Suppose we go over all subsets of the given
set using the Gray code, shown in class. Now omit all subsets of
sizes other than k and k+1. Show that the remaining sequence
does not yield a traversal of our set with minimal changes.
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(d) Prove or disprove: If n = 2k + 1, then it is possible to go
over the set with minimal changes. (This is the so-called Mid-
Levels Conjecture; see, for example, http://teaching.csse.
uwa.edu.au/units/CITS7209/lecture01.pdf.)

20. A legal expression in parentheses is a word in the language of
balanced paretheses. (Namely, it is a word over the alphabet {(, )},
in which the total number of parentheses of the two types is equal
and in every prefix of which the number of right parentheses does
not exceed that of left parentheses.)

(a) For any positive integer n, denote by an the number of legal
expressions in parentheses of length 2n. Prove that

an = a0an−1 +a1an−2 +a2an−3 + . . .+an−1a0, n = 1, 2, . . . .

(b) Employing generating functions, conclude from part (a) that
an =

(
2n
n

)
/(n+ 1) for each n.

(c) Note that a legal expression in parentheses of length 2n is
uniquely determined by the set (of size n) of locations of the
left parentheses. Thus, given any algorithm for traversing the
set of all subsets of size k of a set of size n, we may use it (with
2n and n instead of n and k, respectively) to traverse the set of
legal expressions in parentheses of length 2n (by going over all
expressions with n left and n right parentheses and omitting
the illegal ones). Suppose the given algorithm for traversing all
subsets of size k is linear. Analyze the suggested algorithm for
traversing all legal expressions in parentheses. (Assume that
you can check the legality of an expression in time O(1).)

(d) Develop a linear time algorithm for traversing all legal expres-
sions in parentheses of length 2n in lexicographic order.

(e) Using parts (a) and (b), develop an algorithm of linear expected
time for selecting a random legal expression in parentheses of
length 2n.

21. A subset of {1, 2, . . . , n} is sparse if it contains no two adjacent
numbers.

(a) Suppose a linear time algorithm for traversing the set of all
subsets of {1, 2, . . . , n} of size k (for every n and k) is given.
Consider the following algorithm for traversing the set of all
sparse subsets of {1, 2, . . . , n} of size k: Go over all subsets of
size k and omit those which are not sparse. Is the suggested
algorithm linear? If yes – prove it, if not – explain why not and
suggest a linear time algorithm.
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(b) Develop an algorithm for selecting a random sparse subset of
size k which works in time O(k).

1.6 Non-Uniform Random Selections

22. Let S = {1, 2, . . . , n}, and let P be a probability measure
on 2S. It is required to select a random subset of S according to
P . Suppose that an algorithm A for selecting a uniformly random
subset of S is given. We employ the following algorithm for selecting
a P -distributed subset: We select a uniformly random subset A of S
using A. Then we accept A with probability P (A)/pmax and reject
it with probability 1− P (A)/pmax, where

pmax = max
A⊆S

P (A).

How many times (asymptotically) do we have to invoke A on the
average to select one P -distributed subset for the following mea-
sures P?

(a) P (A) = 0 if |A| is odd, and P (A) is the same for all subsets A
of even size.

(b) Subsets of odd size have twice the probability of subsets of even
size.

(c) The probability of a subset of size k is proportional to 3k.

(d) The probability of a subset of size k is proportional to
(
n
k

)
.

(e) The probability of a subset of size k is inversely proportional to(
n
k

)
.

(f) The probability of a subset is proportional to the sum of its
elements.

(g) The probability of a subset is proportional to the sum of the
squares of its elements.

(h) The probability of a subset is proportional to its maximal ele-
ment (where P (∅) = 0).

(i) The probability of a subset is proportional to its minimal ele-
ment (where P (∅) = 0).

(j) The probability of a subset of size k is proportional to k(k− 1).
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23. Design algorithms for selecting a P -distributed element in parts
(d), (e), (f) and (j) of Question 22. In your algorithms, only one
random set may be selected. (Hints: In (d), you will need to select
a subset of size n of a set of size 2n. In (j), count in two ways the
number of possibilities for choosing a subcommittee of any size, and
2 distinguished members of this subcommittee, say a chairman and
a secretary, out of a committee of size n.)

24. Similarly to Question 22, we want to select random permuta-
tions σ = (σ1, σ2, . . . , σn) of {1, 2, . . . , n} acccording to some prob-
ability measure P on the set of all permutations Sn. An algorithm
A for selecting a uniformly random permutation σ is given, and we
employ it analogously to Question 22. How many times (asymptot-
ically) are we going to invoke A on the average to select a single P -
distributed permutation for the probability measures P determined
by the following conditions?

(a) P (σ) is proportional to σ1.

(b) P (σ) is proportional to σ1 + σn.

(c) P (σ) is proportional to σ2
1.

(d) P (σ) is proportional to σ1 + 2σ2 + . . .+ nσn.

(e) P (σ) is proportional to the number of indices i, 1 ≤ i ≤ n, for
which σi = i.

(f) P (σ) is proportional to the number of indices i, 1 ≤ i ≤ n, for
which σi 6= i.

25. Design algorithms for selecting a P -distributed element in parts
(a) and (d) of Question 24. In your algorithms, only one random
set may be selected.

1.7 Generation of Partitions

26. Let P (n, k) be the set of partitions of n whose maximal com-
ponent is k.

(a) Modify the algorithm presented in class, for traversing the set
of all partitions of n in lexicographic order, to a linear time
algorithm for traversing P (n, k) in lexicographic order.

(b) Consider the algorithm presented in class for traversing the set
of all partitions of n in vocabulary order. Explain why it basi-
cally solves also the problem of traversing P (n, k) in vocabulary
order.

8



27. Denote by p(n) the number of partitions of n (where we agree
that p(0) = 1) and by p(n, k) the number of those partitions of n
whose maximal component is k.

(a) Denote by f the generating function of the double sequence
(p(n, k))∞n,k=0, namely

f(x, y) =
∞∑
n=0

∞∑
k=0

p(n, k)xnyk.

Prove that f satisfies the functional equation

f(x, xy) = (1− xy)f(x, y).

(b) Let g be the generating function of the sequence (p(n))∞n=0.
Express g in terms of f .

(c) Show that p(n+ 1) > p(n) for n ≥ 1.

(d) Show that p(n+ 1, k) ≥ p(n, k) for each n and k.

(e) For each fixed k, find a polynomial Q such that p(n, k) =
Θ(Q(n)).

(f) Prove that p(n, k) ≤
(
n
k

)
for each n and k.

(g) Use the preceding part to obtain an upper bound on p(n).

(h) Obtain the upper bound on p(n), obtained in the preceding
part, directly (i.e., without using p(n, k)).

(i) Prove that p(n) ≥ 2C
√
n for every n ≥ 2 for an appropriate con-

stant C > 0. (Hint: Restrict yourself to partitions using only
some of the possible integers, and such that each component,
except perhaps for 1, appears at most once.)

28. Consider the sum-of-divisors function σ.

(a) Prove σ is a multiplicative function (in the sense of Number
Theory), namely that σ(mn) = σ(m)σ(n) for relatively prime
positive integers m,n.

(b) Deduce the following explicit formula for σ: If n = pe11 p
e2
2 . . . pekk

is the prime-power factorization of n, then

σ(n) =
pe1+1
1

p1 − 1
· p

e2+1
2

p2 − 1
· . . . · p

ek+1
k

pk − 1
.
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1.8 Generation of Set Partitions

29. For integers n ≥ k ≥ 1, denote by P(n) the set of all partitions
of the set {1, 2, . . . , n}, and by P(n, k) its subset consisting of all
partitions into k components. Put an = |P(n)| and an,k = |P(n, k)|.

(a) Prove that for every fixed k we have an,k = Θ(kn).

(b) Conclude from the previous part that the generating function
of the sequence (an) converges only at the point 0.

(c) Prove that for every fixed k we have an,n−k = Θ(nd) for an
appropriate integer d.

(d) Find an explicit formula for an,2.

(e) Same for an,3.

(f) Same for an,n−1.

(g) Same for an,n−2.

(h) Prove that nc1n ≤ an ≤ nc2n for suitable constants c2 > c1 > 0
for all sufficiently large n.

(i) Consider the order on P(n) according to which the algorithm
given in class produces the partitions. Design an algorithm
which, given a partition in P(n, k), produces the next partition
belonging to P(n, k) (or reports that the given partition is the
last in P(n, k)). The algorithm should work in time O(n), with
the implicit constant independent of k.

1.9 Permanents

30. Prove that the permanent, considered as a function of a single
row of the matrix (all other rows being held arbitrarily fixed), is a
linear function.

31.

(a) Suppose that A consists of square blocks “along the diagonal”,
any entries to the right and above these blocks, and 0-s at the
bottom left part. Express Per(A) in terms of the permanents
of the blocks.

(b) Find a formula for the permanent of an upper triangular matrix.
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32. What is the effect of exchanging the order of the rows of a
matrix on its permanent?

33. Let A be an n × n matrix, in which each entry is selected
uniformly randomly from the interval [0, 1], independently of all
other entries.

(a) Find the expected value of Per(A).

(b) Find the expected value of det(A).

34. Let A = (xij)
n
i,j=1 be a generic n× n matrix (namely, a matrix

whose entries are variables, not constants).

(a) Show that, for n = 2, by changing the sign of some appropriate
entries of A, one can obtain a matrix A′ such that det(A′) =
Per(A).

(b) Show that the analogous statement for any n ≥ 3 is false.

1.10 Young Tableaux

35. Explain intuitively which shapes admit many Young tableaux
and which admit relatively few for a given number of cells n. Test
your conjecture on numbers n of the form n = m(m + 1)/2, and
verify it for m = 2, 3.

36. Suggest an algorithm for enumerating all Young tableaux with
n cells.

37. The following algorithm has been suggested for selecting a uni-
formly random Young table with n cells: Choose a uniformly random
partition π of n, and then choose a uniformly random Young table
of shape π. Demonstrate that the algorithm is wrong.

38. The number an of all Young tableaux with n cells is known to
satisfy the recurrence:

an+1 = an + nan−1.

Can you use this formula to design an algorithm for choosing a
uniformly random Young table with n cells (similarly to the way we
have used the hook-length formula to choose a random Young table
of a given shape)?
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