
Final #1

Mark the correct answer in each part of the following questions.

1. In this question we consider permutations σ of {1, 2, . . . , n}, having the
property σ−1(100) < σ−1(50) (i.e., the number 100 appears in σ before
the number 50).

(a) If we go over all permutations of {1, 2, . . . , n} according to the
lexicographic order, then the number of permutations we get, until
we get for the first time a permutation of that type, is

(i) (n− 49)! · (1 + o(1)).

(ii) (n− 50)! · (1 + o(1)).

(iii) (n− 99)! · (1 + o(1)).

(iv) (n− 100)! · (1 + o(1)).

(v) none of the above.

(b) If we go over all permutations of {1, 2, . . . , n} with minimal changes
(according to the order we have seen in class), then the number of
permutations we get, until we get for the first time a permutation
of that type, is

(i) 49 · (n− 100)! +O(1).

(ii) 50 · (n− 100)! +O(1).

(iii) 49 · n!
100!

+O(1).

(iv) 50 · n!
100!

+O(1).

(v) none of the above.

(c) We would like to select a uniformly random permutation having
the property in question. Two methods have been proposed:
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• Method A:

a) Select a random permutation of {1, 2, . . . , n− 2}.
b) Add 1 to all numbers from 50 on.

c) Add 1 to all numbers from 100 on.

d) Select a uniformly random integer k in the range [1, n−1].

e) If k ≤ n − 2, move the number at the k-th place to the
(n− 1)-st place.

f) Place 50 at the k-th place.

g) Select a uniformly random integer m in the range [1, k].

h) Move the number at the m-th place to the n-th place.

i) Place 100 at the m-th place.

• Method B:
Select a uniformly random permutation of {1, 2, . . . , n} until
you obtain a permutation having the property in question.

(i) Both methods select a permutation having the property in
question, but only the second selects it according to the re-
quired probability. Method A requires on the average linear
time and method B requires Θ(n2).

(ii) Both methods select a permutation having the property in
question, but only the second selects it according to the re-
quired probability. Both require on the average linear time.

(iii) Both methods select a permutation as required, but only A
requires on the average linear time, while B requires Θ(n2).

(iv) Both methods select a permutation as required in average
linear time.

(v) None of the above.

(d) Now we want to select a random permutation out of the set of all
permutations, but not uniformly randomly; rather, the probability
of permutations having the property in question should be twice
as large as that of the other permutations. Two methods have
been proposed:

• Method A: Select a uniformly random permutation. If it has
the property in question, take it. Otherwise – interchange the
numbers 50 and 100 with probability α.
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• Method B: Select a uniformly random permutation. If it has
the property in question, take it. Otherwise – with probability
β take it, and with probability 1− β reject it and repeat the
process.

(i) Method A selects a permutation according to the requirements
if α = 1/3. Method B does so if β = 1/2.

(ii) Method A selects a permutation according to the require-
ments if α = 1/3. Method B does so if β = 2/3.

(iii) Method A selects a permutation according to the require-
ments if α = 1/2. Method B does so if β = 1/2.

(iv) Method A selects a permutation according to the require-
ments if α = 1/2. Method B does so if β = 2/3.

(v) None of the above.

2. Consider the algorithm presented in class for traversing the set of all
partitions of {1, 2, . . . , n}. Denote by an the number of partitions.

When proceeding from partition to the next, the number of sets in the
partition may increase, decrease or remain the same. The number of
times (out of an − 1) it remains the same is

(i) an − an−1 + an−2 +O(1).

(ii) an − 2an−1 + an−2 +O(1).

(iii) an − an−1 + 2an−2 +O(1).

(iv) an − 2an−1 + 2an−2 +O(1).

(v) none of the above.

3. In this question we consider trees over n labeled vertices, where n is
even, and in which n/2 + 1 vertices are leaves, while the others are of
degree 3.

We would like to go over this family of trees with changes as small as
possible. More formally, define:
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• A minimal change in a tree consists of removing an edge of the
form (i, j) and adding one of the four edges (i+1, j), (i−1, j), (i, j+
1), (i, j − 1) in its stead (such that we still get a tree).

• A tiny change in a tree consists of removing an edge of the form
(i, j) and adding an edge of the form (i, k) or (k, j) in its stead
(such that we still get a tree).

• A small change in a tree consists of removing an edge (i, j) and
adding any edge (k, l) in its stead (such that we still get a tree).

(i) It is possible to go over the family of trees above with minimal
changes.

(ii) It is possible to go over the family of trees above with tiny changes,
but not with minimal changes.

(iii) It is possible to go over the family of trees above with small
changes, but not with tiny changes.

(iv) It is impossible to go over the family of trees above with small
changes.

(v) none of the above.

4. Consider the set of rectangular Young tableaux, with an arbitrary fixed
number of rows and two columns. Denote by Ym,2 the number of such
tableaux with m rows.

(a) Ym,2 =

(i) 2n.

(ii)
(
2n
n

)
.

(iii)
(2n

n )
n+1

.

(iv) 22n−2.

(v) none of the above.

(b) Consider the algorithm presented in class for traversing the set of
all Young tableaux of a given shape, applied to our case with n
rows. Denote by c2 the number of times in which the location of
the number 2 in the table changes, and by c2n−1 the number of
times in which the location of the number 2n− 1 changes. Then:
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(i) c2 = 2Yn−1,2 +O(1), c2n−1 = 1.

(ii) c2 = 4Yn−1,2 +O(1), c2n−1 = 1.

(iii) c2 = 2Yn−1,2 +O(1), c2n−1 = 2.

(iv) c2 = 4Yn−1,2 +O(1), c2n−1 = 2.

(v) None of the above.

Solutions

1. (a) First, we identify the first permutation satisfying the condition is
question. Since a permutation appears earlier than another if and
only if it has a lower number than the other at the first place they
differ, we look for permutations with small numbers in the begin-
ning. Obviously, the first 49 entries of the required permutation
need to be 1, 2, . . . , 49, in this order. Now the smallest number we
can have is 51, and then 52, 53, . . . , 99. At this point, the smallest
number we can have is 100, then 50, and then 101, 102, . . . , n. In
conclusion, the permutation we are looking for is

(1, 2, . . . , 49, 51, 52, . . . , 99, 100, 50, 101, 102, . . . , n).

Now we count the steps until getting to this permutation when
starting from the identity permutation. To replace the 50 at the
50-th place by 51, we need to go over all permutations of the last
n− 50 elements 51, 52, . . . , n, which takes (n− 50)! steps. At this
point we have the permutation

(1, 2, . . . , 49, 51, 50, 52, . . . , n).

Similarly, we need (n−51)! steps to interchange 50 and 52, another
(n − 52)! steps to interchange 50 and 53, ..., (n − 99)! steps to
interchange 50 and 100. Altogether, the number of steps is

(n− 50)! + (n− 51)! + . . .+ (n− 99)!
≤ (n− 50)! + (n− 51)! · (1 + 1/2 + 1/4 + . . .)
= (n− 50)! + 2 · (n− 51)!
= (n− 50)! · (1 + o(1)).

Thus, (ii) is true.
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(b) For any 1 ≤ i ≤ n − 1 and any ordering of 1, 2, . . . , i, we see in
succession all n!/i! possibilities of completing this ordering to a
permutation of 1, 2, . . . , n. Thus, it will take n!/100! steps until
the number 100 moves for the first time. (Recall our convention
that, when two consecutive numbers interchange, we credit the
move to the larger of the two.) It will take another n!/100! steps
until the number 100 moves for the second time, and so forth. Now
the number 100 needs to move 50 times to the left to get before
50, so that the total number of steps required is 50 · n!/100!.

Thus, (iv) is true.

(c) Method B is a special case of a general method – selecting a random
element until getting an item with the required properties. The
number of times we need to repeat the process is distributed G(p),
where p is the probability of selecting an item as required. In our
case, p = 1/2, so that we need to select two permutations on the
average to get one satisfying σ−1(100) < σ−1(50). Since we can
select a uniformly random permutation in linear time, the method
works in linear time as well.

Method A clearly works in linear time, and selects only permu-
tations satisfying the property in question, but permutations are
not selected with the required probabilities. Consider, for exam-
ple, the permutation (1, 2, . . . , 49, 51, . . . , 99, 101, . . . , n, 100, 50).
It will be selected by the algorithm if and only if we first select the
identity permutation (1, 2, . . . , n−2) of the elements 1, 2, . . . , n−2,
then choose k = n− 1, and then m = n− 1. The probability for
these exact choices is

1

(n− 2)!
· 1

n− 1
· 1

n− 1
=

1

(n− 1)(n− 1)!
<

2

n!
.

Thus, (ii) is true.

(d) With Method A, we select any permutation possessing the prop-
erty in question if we either select it in the first place, or select the
required permutation, with 50 and 100 interchanged, and then at
the second stage interchange 50 and 100. The total probability
for this is

1

n!
+

1

n!
· α =

1 + α

n!
.
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Similarly, the probability for selecting any permutation without
the required property is

1

n!
· (1− α).

To get the correct probabilities we need

1 + α = 2(1− α),

which yields α = 1/3.

Method B is a special case of a general method for selecting ele-
ments from a set randomly, but non-uniformly. As we have seen,
if we select a uniformly random element, then we should accept
it with a probability of p/pmax, where p is the probability with
which we want to select this element, and pmax is the probability
of the element of maximal probability. In our case, this ratio is 1
for permutations possessing the property in question, and is 1/2
for the other permutations. Hence we should take β = 1/2.

Thus, (i) is true.

2. First, let us split the set of partitions into three pairwise disjoint classes:

• The partitions in which n does not belong to the “last” (rightmost)
set.

• The partitions in which n belongs to the last set, but does not
form a set by itself.

• The partitions in which {n} is one of the sets.

The last two collections are obtained from the collection of all partitions
of {1, 2, . . . , n− 1} by adding the element n to the last set in each par-
tition and by adding the singleton {n} to each partition, respectively.
Hence, each of these consists of an−1 partitions, and therefore the first
collection includes an − 2an−1 partitions. Now a change in a partition
of the first type, when moving to its successor, is that we move n to
the next set, which does not change the number of setsR. Hence all
an − 2an−1 partitions of the first type possess the property that the
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number of sets does not change when we move to the next partition.
In all partitions of the second type, the number of sets grows by 1,
and they contribute nothing. A partition of the third type loses a set
because n joins the first set in the partition. However, this loss is offset
if the element n− 1 belongs to the last set in the partition induced on
{1, 2, . . . , n − 1}, but does not form a set by itself there. Namely, the
induced partition is of type analogous to the second type above, but
for {1, 2, . . . , n − 1}. By the same reasoning as before, the number of
these partitions is an−2. Altogether, the number of partitions satisfying
the required condition is

(an − 2an−1) + an−2 = an − 2an−1 + an−2.

Thus, (ii) is true.

3. All types of changes defined in the question change the degree of each
vertex by at most 1. Hence, starting with an arbitrary tree in the
family, it will be impossible by any small change to turn a leaf into a
vertex of degree 3 and vice versa.

Thus, (iv) is true.

4. (a) Square (i, j) has n − i squares below it and 2 − j squares to its
right for 1 ≤ i ≤ n, 1 ≤ j ≤ 2. By the hook length formula:

Yn,2 =
(2n)!

((n+ 1)n(n− 1) · 2) · (n(n− 1) · . . . · 1)

=
(2n)!

(n+ 1)!n!
=

(
2n
n

)
n+ 1

.

Thus, (iii) is true.

(b) The number 2 appears in any Young table either at the top of the
second column or at the second entry of the second column. In
our case, if 2 appears at the top of the second column, then the
rest of the table may be any table of the given shape, but with
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n − 1 rows instead of n, filled by the integers between 3 and 2n,
instead of the integers between 1 and 2n − 2. Hence the number
of these tables is Yn−1,2. Now we claim that, whenever we have
such a table, the 2 will move to the first column already in the
next table (except for the last table in the sequence). Indeed,
the least j which is not at the lowest corner, must be in the first
column, and hence it is larger than 2. When we move to the next
table, we will fill the numbers 1, 2, . . . in the first column up to the
place j occupies. In particular, 2 will move to the first column.
Since 2 is located at the first column in the first table, and at the
second column in the second table, this means that it will change
its location exactly

Yn−1,2 + (Yn−1,2 − 1) = 2Yn−1,2 − 1

times.

The number 2n is at the bottom of the second column in all tables
of the shape in question. Hence we may ignore it, and consider the
shape consisting of one column of height n and a second column
of height n − 1. In all Young tables of this shape, the number
2n − 1 appears at the bottom of one of the columns. Clearly, all
tables with 2n − 1 at the bottom of the second column precede
all those with 2n − 1 at the bottom of the first column. Hence,
2n− 1 will move but once.

Thus, (i) is true.
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