
Automata and Formal Languages

Solutions to Selected Exercises

1 Review of some Basic Notions

5. By induction on n. For n = 24:

24 = 5 · 2 + 7 · 2.
Assume that for some n ≥ 24 we have n = 5a+ 7b for appropriately
chosen non-negative integers a and b. Clearly, we must have either
b ≥ 2 or a ≥ 4. In the first of these cases we have n+ 1 = 7(b− 2) +
5(a+ 3) and in the second n+ 1 = 7(b+ 3) + 5(a− 4).

10. Each of the people knows either 0 other people, or 1, or 2, ...,
or n − 1. It is impossible for one of the people to know 0 others
and for another to know n− 1. Suppose, say, nobody knows n− 1
people. There are n− 1 possibilities regarding the number of other
people each of the people knows. Using the pigeonhole principle, we
conclude that there are two people who know the same number of
people.
The case where each person knows at least one other person is dealt
with in the same way.

13.

(a) Reflexive, symmetric, transitive.

(b) Symmetric.

(c) Reflexive, symmetric.

(d) Reflexive, symmetric, transitive.

(e) Transitive.

(f) Reflexive, transitive.
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(g) Symmetric.

(h) Reflexive, symmetric, transitive.

(i) Reflexive, symmetric.

(j) Reflexive, symmetric, transitive.

(k) Reflexive, symmetric, transitive.

(l) Reflexive, transitive.

(m) Reflexive, symmetric.

(n) Reflexive, symmetric.

17. Let G = (V,E) be a graph with the property described in the
question. We use induction on the size of the graph. For |V | = 2,
denote by v1, v2 the two vertices of G. Then either (v1, v2) ∈ E or
(v2, v1) ∈ E, and therefore there is a Hamiltonian path in G. Now
assume that that the claim holds for graphs with |V | = n, and let
G = (V,E) be a graph with |V | = n + 1 satisfying the property in
the question. Consider the subgraph G′ obtained by omitting the
some vertex v ∈ V from G. By the induction hypothesis there exists
a Hamiltonian path in G′. Let v1, v2, . . . , vn be such a Hamiltonian
path. If the edge (v, v1) is in E, then v, v1, v2, . . . , vn is a Hamiltonian
path in G. Otherwise, (v1, v) ∈ E. Consider the first 1 ≤ i ≤ n− 1
(if there exists any) such that (vi, v) ∈ E and (v, vi+1) ∈ E. If
such an i exists, then v1, . . . , vi, v, vi+1, . . . , vn is a Hamiltonian path
in G. Otherwise, (vn, v) ∈ E, and therefore v1, v2, . . . , vn, v is a
Hamiltonian path in G.

2 Decidable and Undecidable Problems

19. Let z = a + bi 6= 0,±1,±i. The only potential divisors y =
c + di of z are those for which 2 ≤ c2 + d2 < a2 + b2. Since there
are only finitely many such numbers, we can check for each of these
whether or not it divides z.

24. Let a ∈ [1, n] be a number for which the equation is solvable.
Note that it suffices to consider non-negative solutions (x, y, z). If
(x, y, z) is such a solution, then x, y, z ≤ 4

√
n. Since the number of

triples (x, y, z) with integral x, y, z in the range [0, 4
√
n] is at most

(n1/4 + 1)3 = o(n), for most integers a there is no solution.
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3 Alphabets and Languages

25.

(a) Let us show that two words x, y ∈ Σ∗ commute if and only if
x = wk and y = wl for some w ∈ Σ∗ and k, l ≥ 0.
In fact, the “if” part is straightforward. For the “only if” part,
we have to show that, if xy = yx, then x = wk and y = wl

for some w ∈ Σ∗ and k, l ≥ 0. We use induction on |x| · |y|. If
|x| · |y| = 0 the claim is trivial. Suppose the claim is correct
for all pairs of words x, y ∈ Σ∗ such that |x| · |y| < n for some
n ≥ 1. Let x, y ∈ Σ∗ be two words with |x| · |y| = n. Assume,
say, 1 ≤ |x| = p ≤ q = |y|. The equality xy = yx shows,
in particular, that the prefix of length p of the words xy and
yx coincide. Thus, x is a prefix of y. Write y = xu, where
|u| = q − p. Since xy = yx, we have xxu = xux, so that
xu = ux. Since |x| · |u| = p(q − p) < n, there exist some
w ∈ Σ∗ and k, l′ ≥ 0 such that x = wk and u = wl

′
. Hence,

y = xu = wkwl
′

= wk+l′ = wl for l = k + l′, and thereby the
“only if” part is proven.

28.

(a) To prove the inclusion L1L3∪L2L3 ⊆ (L1∪L2)3, we note that,
in general, if L′ ⊆ L′′, then L′L ⊆ L′′L for every L. In our
case, since both L1 ⊆ L1 ∪ L2 and L2 ⊆ L1 ∪ L2, we have
L1L3 ⊆ (L1 ∪ L2)L3 and L2L3 ⊆ (L1 ∪ L2)L3, thus proving
the required inclusion.
To prove the converse inclusion, let w ∈ (L1 ∪ L2)L3. Write
w = uv, where u ∈ L1 ∪ L2 and v ∈ L3. If u ∈ L1, then
uv ∈ L1L3, and so w = uv ∈ L1L3 ∪ L2L3. Otherwise, u ∈ L2,
uv ∈ L1L2, and so w = uv ∈ L1L3 ∪ L2L3.

(b) Let L1 = {1}, L2 = {10}, L3 = {1, 01}, and w = 101. Then
w ∈ L1L3 ∩ L2L3, but w /∈ (L1 ∩ L2)L3.

4 Regular Expressions

34.

a. 1∗0.

b. (0 ∪ 1)∗.
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c. (0 ∪ 1)∗1 ∪ φ∗ ∪ (01∗100)∗.

d. (a ∪ b)∗.
e. b∗a.

f. b(a ∪ b)∗ ∪ (a ∪ b)∗b ∪ φ∗.
g. b∗a(a ∪ b)∗

5 Deterministic Finite Automata

6 Non-Deterministic Finite Automata

7 Pumping Lemma

8 Context-Free Grammars

9 Regular Grammars

10 Pushdown Automata

11 Closure Properties; Non-Context-Freeness Proofs

12 Turing Machines
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