
Final #1

Mark all correct answers for each of the following questions.
Σ denotes an arbitrary alphabet and L an arbitrary language over Σ,

unless otherwise specified.

1. Given a language L over Σ, denote:

L← = {w2w1 : w1, w2 ∈ Σ∗, w1w2 ∈ L} .

(a) If L ⊆ Σ∗, then (L←)← = L.

(b) If L1, L2 ⊆ Σ∗, then (L1L2)← = L←2 L
←
1 .

(c) If L← is regular, then so is L.

(d) There exists a language L ⊆ Σ∗ such that, defining the sequence
of languages (Ln)∞n=0 inductively by

L0 = L,
Ln = L←n−1, n ≥ 1,

we have
L0 (L1 (L2 (... .

(e) If L = {anbn : n ≥ 0}, then L← is context-free.

2. (a) If M = (Q,Σ,Γ,∆, s, A) is a pushdown automaton and α0 ∈ Γ∗,
then the language

L = {w ∈ Σ∗ : (s, w, ε)|∗
M

(q, ε, α0) for some q ∈ A}

is context-free.

1

(b) If M and α0 are as in the preceding part, then the language

L = {w ∈ Σ∗ : (s, w, α0)|∗
M

(q, ε, ε) for some q ∈ A}

is context-free.

(c) Let M = (Q, {a, b}, {a},∆, s, {s}) be the pushdown automaton
depicted in the following diagram:

a, ε|a

b, a|ε
b, a2|ε

Then L(M) is the collection of all words w over the alphabet
{a, b}, satisfying:

i. |w|a ≤ 2|w|b.
ii. For every prefix u of w we have |u|b ≤ |u|a.

(d) Let G = (N,Σ, R, S) be the context-free grammar satisfying
L(G) = L(M) for the pushdown automaton M from the pre-
ceding part, constructed according to the algorithm presented in
class. Then |N | = 9.

(e) Let G be the grammar from the preceding part. Then |R| = 8.

3. Let G = (N,Σ, R, S) be a context-free grammar.

(a) If the rules in R are

• S → SSS | w1 | w2 | . . . | wk,
where w1, w2, . . . , wk ∈ Σ∗, then there exists a regular grammar
equivalent to G.

(b) Let G′ = (N,Σ, R′, S) be another context-free grammar, such that
R′) R. If G,G′ are arbitrary grammars, then it may be the case
that L(G′) = L(G). However, if both of them are regular, then
L(G′)) L(G).

(c) Let G′ = (N,Σ, R′, S) be a context-free grammar with R∩R′ = ∅.
Then L(G) ∩ L(G′) = ∅.

2

(d) Let G′ = (N,Σ, R′, S) be a context-free grammar with R∩R′ 6= ∅.
Then L(G) ∩ L(G′) 6= ∅.

(e) If (S, SS) ∈ R, then L(G)+ = L(G).

(f) Let M = (Q,Σ,Γ,∆, s, {s}) be a pushdown automaton. Then
L(M)+ = L(M).

4. (a) We have seen in class that the language K0 is Turing-accepted
but not Turing-decidable. K0 is not the only language over the
alphabet {I, c} having these two properties. In fact, there are
uncountably many languages over this alphabet with these prop-
erties.

(b) Let LTD denote the set of all Turing-decidable languages over Σ
and let LCTD denote the complementary set of languages. Put:

L1 =
⋃

L∈LTD

L, L2 =
⋃

L∈LCTD

L.

Then both languages L1 and L2 are Turing-decidable.

(c) Let f : Z+ → Z+ be a function having the property that for each
x ∈ Z+ we have either f(x) = x or f(x) = x + 1. Then there
exists a Turing machine computing f .

(d) If M is a Turing machine computing the function f : {0, 1}∗ →
{0, 1}∗ given by

f(w) = wwRw, w ∈ {0, 1}∗,

then M computes a function g1,3 : Z+ → Z3
+ which is injective

but not surjective.

3

Solutions

1. If L = {ab}, then L← = {ab, ba} and (L←)← = {ab, ba} 6= L.

If L1 = {a}, L2 = {b}, then L1L2 = {ab}, and therefore (L1L2)← =
{ab, ba}, whereas L←2 L

←
1 = {ba}.

Let L be a language over {a, b}, with the property that, for each n ≥ 2,
it contains all words of length n except for exactly one word, which is
neither an nor bn. (To be specific, you may suppose the missing word is
either abn−1 or an−1b.) Moreover suppose L contains all words of length
at most 1. Clearly, L may be selected in uncountably many distinct
ways, and in particular can be chosen not to be regular. However, in
any case L← = {a, b}∗.
Obviously, the set of words belonging to L← due to any word w in L
contains w itself, and hence L← ⊇ L. However, the words belonging
to (L←)← due to each of these words belongs already to L←. Thus,
(L←)← = L←. It follows that, for the construction in (d), all sets Ln,
with the possible exception of L0, are identical.

If L = {anbn : n ≥ 0}, then L← = {akbnan−k : n ≥ k ≥ 0}∪{bkanbn−k :
n ≥ k ≥ 0}. We may express L← alternatively in the form

L← = {akbkblal : k, l ≥ 0} ∪ {bkakalbl : k, l ≥ 0}
= LL′ ∪ L′L,

where: L′ = {bnan : n ≥ 0}. Since L, and similarly L′, are context-free,
so is L←.

Thus, only (e) is true.

2. To show that the language L in (a) is context-free, consider the push-
down automaton M ′ = (Q ∪ {f},Σ,Γ,∆′, s, {f}), where f /∈ Q and

∆′ = ∆ ∪ {((q, ε, α0), (f, ε)) : q ∈ A}.

A word w is accepted by M ′ if and only if (s, w, ε)| ∗
M ′

(f, ε, ε), which
holds if and only if (s, w, ε)|∗

M
(q, ε, α0) for some q ∈ A. Hence L =

L(M ′).

4

Similarly, the language L in (b) is the language accepted by the push-
down automaton M ′ = (Q ∪ {s′},Σ,Γ,∆′, s′, A), where s′ /∈ Q and
∆′ = ∆ ∪ {((s′, ε, ε), (s, α0))}.
Non-empty words accepted by the automaton M in (c) must clearly
end with the letter b. In particular, the word aba /∈ L(M). However,
this word does satisfy both properties (c).i and (c).ii.

To transform M into a simple pushdown automaton, we first have to
add to ∆ the transition ((s, a, a), (s, a2)). Also, we have to remove the
transition ((s, b, a2), (s, ε)), and instead add a state p to Q, along with
the transitions ((s, ε, a), (p, ε, ε)) and ((p, b, a), (s, ε, ε)).

Denote byM ′ the simple pushdown automaton obtained by these changes
Since it has two states, and operates with a stack alphabet of size 1,
we have |N | = 1 + 2 · (1 + 1) · 2 = 9.

Since M ′ contains a single accepting state, R contains a single rule of
type A. Each transition in M ′, in which a non-empty word of length n
is added to the stack, contributes |Q′|n rules of type B to R (where Q′ is
the set of states of M ′). In our case, we have one such rule, with n = 1,
and |Q′| = 2, so that we have two rules of type B. Each transition in
M ′, in which nothing is added to the stack, contributes |Q′| rules of
type C to R. In our case, this provides 3 ·2 = 6 rules of type C. Finally,
each state in A contributes one rule of type D, and hence we have one
such rule in our case. Altogether, |R| = 10.

Thus, (a), (b) and (d) are true.

3. For the grammar in (a) we have L(G) = {w1, w2, . . . , wk}∗. In fact, each
word belonging to the language on the right-hand side can clearly be de-
rived from S, so that L(G) ⊇ {w1, w2, . . . , wk}∗. On the other hand, by
induction on the number of derivations, we easily show that any word in
(N ∪Σ)∗ which can be derived (in any number of steps) from S belongs
to {S,w1, w2, . . . , wk}∗, and in particular L(G) ⊆ {w1, w2, . . . , wk}∗.
Since L(G) is regular, there exists a regular grammar equivalent to G.

If R in (b) consists of the rules

• S → aS | ε,

5

and R′ consists of

• S → aS | a2S | ε,

then R′) R, yet L(G′) = L(G) = {a}∗.
If R in (c) consists of the rules

• S → aS | ε,

and R′ consists of

• S → Sa | a,

then R ∩ R′ = ∅, yet L(G) = {a}∗ and L(G′) = {a}+, so that L(G′) ∩
L(G) = {a}+.

If R in (d) consists of the rules

• S → SS | a,

and R′ consists of

• S → SS | b,

then R ∩R′ 6= ∅, yet clearly L(G) ∩ L(G′) = ∅.
Let (S, SS) ∈ R and w1, w2, . . . , wk ∈ L(G). Then

S=⇒
G
SS=⇒

G
SSS=⇒

G
. . .=⇒

G
Sk

∗
=⇒
G
w1w2 . . . wk.

Hence L(G) ⊇ L(G)+. The inverse inclusion is trivial, and consequently
L(G)+ = L(G).

Let M be a pushdown automaton as in (f), and let w1, w2, . . . , wk ∈
L(M). Then (s, wi, ε)|∗M (s, ε, ε) for 1 ≤ i ≤ k. Therefore

(s, w1w2 . . . wk, ε)|∗M (s, w2 . . . wk, ε)|∗M (s, w3 . . . wk, ε)|∗M . . .
|∗
M

(s, wk, ε)|∗M (s, ε, ε),

so that w1w2 . . . wk ∈ L(M). Hence L(M) ⊇ L(M)+, which implies
L(M) = L(M)+. Thus, (a), (e) and (f) are true.

6

4. There exist only countably many describable languages, and hence
there exist only countably many Turing-accepted languages (whether
Turing-decidable or not).

Since Σ∗ is Turing-decidable, one of the sets in the union defining L1

in (b) is Σ∗, and therefore L1 = Σ∗. On the other hand, let L0 be
any Turing-undecidable language. Then LC0 is also Turing-undecidable.
The union defining L2 contains therefore both L0 and LC0 , so that
L2 = Σ∗.

The collection of functions with the property in (c) is clearly uncount-
able, and hence not every such function has a Turing machine comput-
ing it.

The number n ∈ Z+ is represented by the word 1n0. For the function
f in (d) we have

f(1n0) = 1n0(1n0)R1n0 = 1n0212n0.

The right-hand side represents the point (n, 0, 2n) ∈ Z3
+, so that M

computes the function given by

g1,3(n) = (n, 0, 2n), n ∈ Z+.

Obviously, g1,3 is injective but not surjective.

Thus, (b) and (d) are true.

7

