Final \#1

Mark all correct answers for each of the following questions.
Σ denotes an arbitrary alphabet and L an arbitrary language over Σ, unless otherwise specified.

1. Given a language L over Σ, denote:

$$
L^{\leftarrow}=\left\{w_{2} w_{1}: w_{1}, w_{2} \in \Sigma^{*}, w_{1} w_{2} \in L\right\} .
$$

(a) If $L \subseteq \Sigma^{*}$, then $\left(L^{\leftarrow}\right)^{\leftarrow}=L$.
(b) If $L_{1}, L_{2} \subseteq \Sigma^{*}$, then $\left(L_{1} L_{2}\right)^{\leftarrow}=L_{2}^{\leftarrow} L_{1}^{\leftarrow}$.
(c) If L^{\leftarrow} is regular, then so is L.
(d) There exists a language $L \subseteq \Sigma^{*}$ such that, defining the sequence of languages $\left(L_{n}\right)_{n=0}^{\infty}$ inductively by

$$
\begin{aligned}
& L_{0}=L, \\
& L_{n}=L_{n-1}^{\overleftarrow{ }}, \quad n \geq 1,
\end{aligned}
$$

we have

$$
L_{0} \subsetneq L_{1} \subsetneq L_{2} \subsetneq \ldots
$$

(e) If $L=\left\{a^{n} b^{n}: n \geq 0\right\}$, then L^{\leftarrow} is context-free.
2. (a) If $M=(Q, \Sigma, \Gamma, \Delta, s, A)$ is a pushdown automaton and $\alpha_{0} \in \Gamma^{*}$, then the language

$$
L=\left\{w \in \Sigma^{*}:\left.(s, w, \varepsilon)\right|_{M} ^{*}\left(q, \varepsilon, \alpha_{0}\right) \text { for some } q \in A\right\}
$$

is context-free.
(b) If M and α_{0} are as in the preceding part, then the language

$$
L=\left\{w \in \Sigma^{*}:\left.\left(s, w, \alpha_{0}\right)\right|_{M} ^{*}(q, \varepsilon, \varepsilon) \text { for some } q \in A\right\}
$$

is context-free.
(c) Let $M=(Q,\{a, b\},\{a\}, \Delta, s,\{s\})$ be the pushdown automaton depicted in the following diagram:

Then $L(M)$ is the collection of all words w over the alphabet $\{a, b\}$, satisfying:
i. $|w|_{a} \leq 2|w|_{b}$.
ii. For every prefix u of w we have $|u|_{b} \leq|u|_{a}$.
(d) Let $G=(N, \Sigma, R, S)$ be the context-free grammar satisfying $L(G)=L(M)$ for the pushdown automaton M from the preceding part, constructed according to the algorithm presented in class. Then $|N|=9$.
(e) Let G be the grammar from the preceding part. Then $|R|=8$.
3. Let $G=(N, \Sigma, R, S)$ be a context-free grammar.
(a) If the rules in R are

$$
\text { - } S \rightarrow S S S\left|w_{1}\right| w_{2}|\ldots| w_{k}
$$

where $w_{1}, w_{2}, \ldots, w_{k} \in \Sigma^{*}$, then there exists a regular grammar equivalent to G.
(b) Let $G^{\prime}=\left(N, \Sigma, R^{\prime}, S\right)$ be another context-free grammar, such that $R^{\prime} \supsetneq R$. If G, G^{\prime} are arbitrary grammars, then it may be the case that $L\left(G^{\prime}\right)=L(G)$. However, if both of them are regular, then $L\left(G^{\prime}\right) \supsetneq L(G)$.
(c) Let $G^{\prime}=\left(N, \Sigma, R^{\prime}, S\right)$ be a context-free grammar with $R \cap R^{\prime}=\emptyset$. Then $L(G) \cap L\left(G^{\prime}\right)=\emptyset$.
(d) Let $G^{\prime}=\left(N, \Sigma, R^{\prime}, S\right)$ be a context-free grammar with $R \cap R^{\prime} \neq \emptyset$. Then $L(G) \cap L\left(G^{\prime}\right) \neq \emptyset$.
(e) If $(S, S S) \in R$, then $L(G)^{+}=L(G)$.
(f) Let $M=(Q, \Sigma, \Gamma, \Delta, s,\{s\})$ be a pushdown automaton. Then $L(M)^{+}=L(M)$.
4. (a) We have seen in class that the language K_{0} is Turing-accepted but not Turing-decidable. K_{0} is not the only language over the alphabet $\{I, c\}$ having these two properties. In fact, there are uncountably many languages over this alphabet with these properties.
(b) Let $\mathcal{L}_{\text {TD }}$ denote the set of all Turing-decidable languages over Σ and let $\mathcal{L}_{\mathrm{TD}}^{C}$ denote the complementary set of languages. Put:

$$
L_{1}=\bigcup_{L \in \mathcal{L}_{\mathrm{TD}}} L, \quad L_{2}=\bigcup_{L \in \mathcal{L}_{\mathrm{TD}}^{C}} L
$$

Then both languages L_{1} and L_{2} are Turing-decidable.
(c) Let $f: \mathbf{Z}_{+} \rightarrow \mathbf{Z}_{+}$be a function having the property that for each $x \in \mathbf{Z}_{+}$we have either $f(x)=x$ or $f(x)=x+1$. Then there exists a Turing machine computing f.
(d) If M is a Turing machine computing the function $f:\{0,1\}^{*} \rightarrow$ $\{0,1\}^{*}$ given by

$$
f(w)=w w^{R} w, \quad w \in\{0,1\}^{*},
$$

then M computes a function $g_{1,3}: \mathbf{Z}_{+} \rightarrow \mathbf{Z}_{+}^{3}$ which is injective but not surjective.

Solutions

1. If $L=\{a b\}$, then $L^{\leftarrow}=\{a b, b a\}$ and $\left(L^{\leftarrow}\right)^{\leftarrow}=\{a b, b a\} \neq L$.

If $L_{1}=\{a\}, L_{2}=\{b\}$, then $L_{1} L_{2}=\{a b\}$, and therefore $\left(L_{1} L_{2}\right)^{\leftarrow}=$ $\{a b, b a\}$, whereas $L_{2}^{\leftarrow} L_{1}^{\leftarrow}=\{b a\}$.
Let L be a language over $\{a, b\}$, with the property that, for each $n \geq 2$, it contains all words of length n except for exactly one word, which is neither a^{n} nor b^{n}. (To be specific, you may suppose the missing word is either $a b^{n-1}$ or $a^{n-1} b$.) Moreover suppose L contains all words of length at most 1. Clearly, L may be selected in uncountably many distinct ways, and in particular can be chosen not to be regular. However, in any case $L^{\leftarrow}=\{a, b\}^{*}$.
Obviously, the set of words belonging to $L \leftarrow$ due to any word w in L contains w itself, and hence $L^{\leftarrow} \supseteq L$. However, the words belonging to $\left(L^{\leftarrow}\right) \leftarrow$ due to each of these words belongs already to L^{\leftarrow}. Thus, $\left(L^{\leftarrow}\right) \leftarrow=L^{\leftarrow}$. It follows that, for the construction in (d), all sets L_{n}, with the possible exception of L_{0}, are identical.
If $L=\left\{a^{n} b^{n}: n \geq 0\right\}$, then $L^{\leftarrow}=\left\{a^{k} b^{n} a^{n-k}: n \geq k \geq 0\right\} \cup\left\{b^{k} a^{n} b^{n-k}\right.$: $n \geq k \geq 0\}$. We may express $L \leftarrow$ alternatively in the form

$$
\begin{aligned}
L^{\leftarrow} & =\left\{a^{k} b^{k} b^{l} a^{l}: k, l \geq 0\right\} \cup\left\{b^{k} a^{k} a^{l} b^{l}: k, l \geq 0\right\} \\
& =L L^{\prime} \cup L^{\prime} L,
\end{aligned}
$$

where: $L^{\prime}=\left\{b^{n} a^{n}: n \geq 0\right\}$. Since L, and similarly L^{\prime}, are context-free, so is L^{\leftarrow}.

Thus, only (e) is true.
2. To show that the language L in (a) is context-free, consider the pushdown automaton $M^{\prime}=\left(Q \cup\{f\}, \Sigma, \Gamma, \Delta^{\prime}, s,\{f\}\right)$, where $f \notin Q$ and

$$
\Delta^{\prime}=\Delta \cup\left\{\left(\left(q, \varepsilon, \alpha_{0}\right),(f, \varepsilon)\right): q \in A\right\}
$$

A word w is accepted by M^{\prime} if and only if $(s, w, \varepsilon) \left\lvert\, \frac{*}{M^{\prime}}(f, \varepsilon, \varepsilon)\right.$, which holds if and only if $\left.(s, w, \varepsilon)\right|_{M} ^{*}\left(q, \varepsilon, \alpha_{0}\right)$ for some $q \in A$. Hence $L=$ $L\left(M^{\prime}\right)$.

Similarly, the language L in (b) is the language accepted by the pushdown automaton $M^{\prime}=\left(Q \cup\left\{s^{\prime}\right\}, \Sigma, \Gamma, \Delta^{\prime}, s^{\prime}, A\right)$, where $s^{\prime} \notin Q$ and $\Delta^{\prime}=\Delta \cup\left\{\left(\left(s^{\prime}, \varepsilon, \varepsilon\right),\left(s, \alpha_{0}\right)\right)\right\}$.
Non-empty words accepted by the automaton M in (c) must clearly end with the letter b. In particular, the word $a b a \notin L(M)$. However, this word does satisfy both properties (c).i and (c).ii.

To transform M into a simple pushdown automaton, we first have to add to Δ the transition $\left((s, a, a),\left(s, a^{2}\right)\right)$. Also, we have to remove the transition $\left(\left(s, b, a^{2}\right),(s, \varepsilon)\right)$, and instead add a state p to Q, along with the transitions $((s, \varepsilon, a),(p, \varepsilon, \varepsilon))$ and $((p, b, a),(s, \varepsilon, \varepsilon))$.
Denote by M^{\prime} the simple pushdown automaton obtained by these changes Since it has two states, and operates with a stack alphabet of size 1 , we have $|N|=1+2 \cdot(1+1) \cdot 2=9$.
Since M^{\prime} contains a single accepting state, R contains a single rule of type A. Each transition in M^{\prime}, in which a non-empty word of length n is added to the stack, contributes $\left|Q^{\prime}\right|^{n}$ rules of type B to R (where Q^{\prime} is the set of states of M^{\prime}). In our case, we have one such rule, with $n=1$, and $\left|Q^{\prime}\right|=2$, so that we have two rules of type B. Each transition in M^{\prime}, in which nothing is added to the stack, contributes $\left|Q^{\prime}\right|$ rules of type C to R. In our case, this provides $3 \cdot 2=6$ rules of type C. Finally, each state in A contributes one rule of type D , and hence we have one such rule in our case. Altogether, $|R|=10$.
Thus, (a), (b) and (d) are true.
3. For the grammar in (a) we have $L(G)=\left\{w_{1}, w_{2}, \ldots, w_{k}\right\}^{*}$. In fact, each word belonging to the language on the right-hand side can clearly be derived from S, so that $L(G) \supseteq\left\{w_{1}, w_{2}, \ldots, w_{k}\right\}^{*}$. On the other hand, by induction on the number of derivations, we easily show that any word in $(N \cup \Sigma)^{*}$ which can be derived (in any number of steps) from S belongs to $\left\{S, w_{1}, w_{2}, \ldots, w_{k}\right\}^{*}$, and in particular $L(G) \subseteq\left\{w_{1}, w_{2}, \ldots, w_{k}\right\}^{*}$. Since $L(G)$ is regular, there exists a regular grammar equivalent to G. If R in (b) consists of the rules

$$
\text { - } S \rightarrow a S \mid \varepsilon
$$

and R^{\prime} consists of

- $S \rightarrow a S\left|a^{2} S\right| \varepsilon$,
then $R^{\prime} \supsetneq R$, yet $L\left(G^{\prime}\right)=L(G)=\{a\}^{*}$.
If R in (c) consists of the rules
- $S \rightarrow a S \mid \varepsilon$,
and R^{\prime} consists of
- $S \rightarrow S a \mid a$,
then $R \cap R^{\prime}=\emptyset$, yet $L(G)=\{a\}^{*}$ and $L\left(G^{\prime}\right)=\{a\}^{+}$, so that $L\left(G^{\prime}\right) \cap$ $L(G)=\{a\}^{+}$.
If R in (d) consists of the rules
- $S \rightarrow S S \mid a$,
and R^{\prime} consists of
- $S \rightarrow S S \mid b$,
then $R \cap R^{\prime} \neq \emptyset$, yet clearly $L(G) \cap L\left(G^{\prime}\right)=\emptyset$.
Let $(S, S S) \in R$ and $w_{1}, w_{2}, \ldots, w_{k} \in L(G)$. Then

$$
S \underset{G}{\Longrightarrow} S S \underset{G}{\Longrightarrow} S S S \underset{G}{\Longrightarrow} \cdots \underset{G}{\Longrightarrow} S^{k} \underset{G}{*} w_{1} w_{2} \ldots w_{k}
$$

Hence $L(G) \supseteq L(G)^{+}$. The inverse inclusion is trivial, and consequently $L(G)^{+}=L(G)$.
Let M be a pushdown automaton as in (f), and let $w_{1}, w_{2}, \ldots, w_{k} \in$ $L(M)$. Then $\left.\left(s, w_{i}, \varepsilon\right)\right|_{M} ^{*}(s, \varepsilon, \varepsilon)$ for $1 \leq i \leq k$. Therefore

$$
\begin{gathered}
\left.\left.\left.\left(s, w_{1} w_{2} \ldots w_{k}, \varepsilon\right)\right|_{M} ^{*}\left(s, w_{2} \ldots w_{k}, \varepsilon\right)\right|_{M} ^{*}\left(s, w_{3} \ldots w_{k}, \varepsilon\right)\right|_{M} ^{*} \ldots \\
\left.\left.\right|_{M} ^{*}\left(s, w_{k}, \varepsilon\right)\right|_{M} ^{*}(s, \varepsilon, \varepsilon),
\end{gathered}
$$

so that $w_{1} w_{2} \ldots w_{k} \in L(M)$. Hence $L(M) \supseteq L(M)^{+}$, which implies $L(M)=L(M)^{+}$. Thus, (a), (e) and (f) are true.
4. There exist only countably many describable languages, and hence there exist only countably many Turing-accepted languages (whether Turing-decidable or not).

Since Σ^{*} is Turing-decidable, one of the sets in the union defining L_{1} in (b) is Σ^{*}, and therefore $L_{1}=\Sigma^{*}$. On the other hand, let L_{0} be any Turing-undecidable language. Then L_{0}^{C} is also Turing-undecidable. The union defining L_{2} contains therefore both L_{0} and L_{0}^{C}, so that $L_{2}=\Sigma^{*}$.
The collection of functions with the property in (c) is clearly uncountable, and hence not every such function has a Turing machine computing it.
The number $n \in \mathbf{Z}_{+}$is represented by the word $1^{n} 0$. For the function f in (d) we have

$$
f\left(1^{n} 0\right)=1^{n} 0\left(1^{n} 0\right)^{R} 1^{n} 0=1^{n} 0^{2} 1^{2 n} 0 .
$$

The right-hand side represents the point $(n, 0,2 n) \in \mathbf{Z}_{+}^{3}$, so that M computes the function given by

$$
g_{1,3}(n)=(n, 0,2 n), \quad n \in \mathbf{Z}_{+} .
$$

Obviously, $g_{1,3}$ is injective but not surjective.
Thus, (b) and (d) are true.

