Final #1

Mark all correct answers for each of the following questions.
>} denotes an arbitrary alphabet and L an arbitrary language over X,
unless otherwise specified.

1. Given a language L over 3., denote:
L™ = {wow; : wy,wy € ¥, wywy € L} .
(a) If L C ¥*, then (L)~ = L.
(b) If Ll,LQ g E*, then (LlLQ)H = L;LT
(c) If L is regular, then so is L.
(d) There exists a language L C ¥* such that, defining the sequence
of languages (L,)52, inductively by

LO - L,

Ln:L;—_17 nZ ].7
we have

Lo C Ly CLyC ...

(e) If L ={a™":n >0}, then L~ is context-free.

2. () If M =(Q,%,I'A s, A) is a pushdown automaton and «g € I'™,
then the language

L={weX:(s,we)(q¢e, ) for some g € A}

M

is context-Iree.



(b) If M and ag are as in the preceding part, then the language

L={weX:(s,w a0)l(qe,e) for some g € A}

M
is context-free.
(c) Let M = (Q,{a,b},{a},A, s, {s}) be the pushdown automaton
depicted in the following diagram:

a,cla

(X
Q b,ale

b, a’*|e

Then L(M) is the collection of all words w over the alphabet
{a, b}, satisfying:
i |w]e < 2|wlp.
ii. For every prefix u of w we have |u|, < |ul,.
(d) Let G = (N,X,R,S) be the context-free grammar satisfying
L(G) = L(M) for the pushdown automaton M from the pre-

ceding part, constructed according to the algorithm presented in
class. Then |N| =9.

(e) Let G be the grammar from the preceding part. Then |R| = 8.

. Let G = (N, %, R, S) be a context-free grammar.

(a) If the rules in R are
e S—SSS|wy|we| ... | wy,

where wy, ws, ..., w, € X*, then there exists a regular grammar
equivalent to G.

(b) Let G' = (N, X, R, S) be another context-free grammar, such that
R O R. If G, G’ are arbitrary grammars, then it may be the case
that L(G') = L(G). However, if both of them are regular, then
L(G") 2 L(G).

(c) Let G = (N, %, R, S) be a context-free grammar with RN R’ = ().
Then L(G) N L(G') = 0.



(d) Let G' = (N, %, R, S) be a context-free grammar with RN R' # ().
Then L(G) N L(G") # 0.

(e) If (S, SS) € R, then L(G)" = L(G).

(f) Let M = (Q,%,I',A,s,{s}) be a pushdown automaton. Then
L(M)* = L(M).

(a) We have seen in class that the language K is Turing-accepted
but not Turing-decidable. K is not the only language over the
alphabet {I,c} having these two properties. In fact, there are
uncountably many languages over this alphabet with these prop-
erties.

(b) Let Lrp denote the set of all Turing-decidable languages over X
and let £$}, denote the complementary set of languages. Put:

L=JL L=1|JL
LeLTp LecLS,

Then both languages L; and Ly are Turing-decidable.

(c) Let f:Z, — Z, be a function having the property that for each
xr € Z, we have either f(z) = z or f(x) = x + 1. Then there
exists a Turing machine computing f.

(d) If M is a Turing machine computing the function f : {0,1}* —
{0,1}* given by

fw) = wwfw, w € {0,1}7,

then M computes a function ¢;3 : Zy — Z2 which is injective
but not surjective.



Solutions

1. If L = {ab}, then L= = {ab,ba} and (L)~ = {ab,ba} # L.

If Ly = {a}, Ly = {b}, then L;Ls = {ab}, and therefore (L,Ls)" =
{ab,ba}, whereas Ly LT = {ba}.

Let L be a language over {a, b}, with the property that, for each n > 2,
it contains all words of length n except for exactly one word, which is
neither a” nor b". (To be specific, you may suppose the missing word is
either ab™ ! or a”~'b.) Moreover suppose L contains all words of length
at most 1. Clearly, L may be selected in uncountably many distinct
ways, and in particular can be chosen not to be regular. However, in
any case L~ = {a,b}".

Obviously, the set of words belonging to L~ due to any word w in L
contains w itself, and hence L~ O L. However, the words belonging
to (L)~ due to each of these words belongs already to L. Thus,
(L))" = L. It follows that, for the construction in (d), all sets L,
with the possible exception of Lg, are identical.

If L= {a™" :n >0}, then L= = {a*b"a" % :n >k > 0} U{brFa™b" " :
n >k > 0}. We may express L alternatively in the form

L= = {d*"d' : k1 >0} u{bFakald! : k,1 >0}
LL'ULL,
where: L' = {b"a" : n > 0}. Since L, and similarly L’ are context-free,
sois L.

Thus, only (e) is true.

2. To show that the language L in (a) is context-free, consider the push-

down automaton M’ = (Q U {f}, X, T, A", s,{f}), where f ¢ Q and

A =AU{((q,e,a0),(f,€)) : q € A}.

A word w is accepted by M’ if and only if (s,w,e)(f,,¢), which

M’

holds if and only if (s,w,¢)[=(q, €, ap) for some ¢ € A. Hence L =
LOM).



Similarly, the language L in (b) is the language accepted by the push-
down automaton M’ = (Q U {s'}, X, ', A’ s’ A), where s’ ¢ @ and
A =AU{((s,e,¢),(s,a))}

Non-empty words accepted by the automaton M in (c¢) must clearly
end with the letter b. In particular, the word aba ¢ L(M). However,
this word does satisfy both properties (¢).i and (c).ii.

To transform M into a simple pushdown automaton, we first have to
add to A the transition ((s,a,a), (s,a?)). Also, we have to remove the
transition ((s, b, a?), (s,¢)), and instead add a state p to @, along with
the transitions ((s,¢,a), (p,e,¢)) and ((p, b, a), (s,€,¢)).

Denote by M’ the simple pushdown automaton obtained by these changes
Since it has two states, and operates with a stack alphabet of size 1,
we have [IN|=1+2-(14+1)-2=09.

Since M’ contains a single accepting state, R contains a single rule of
type A. Each transition in M’, in which a non-empty word of length n
is added to the stack, contributes |Q’|" rules of type B to R (where Q' is
the set of states of M’). In our case, we have one such rule, with n = 1,
and |Q'| = 2, so that we have two rules of type B. Each transition in
M’; in which nothing is added to the stack, contributes |Q’| rules of
type C to R. In our case, this provides 3-2 = 6 rules of type C. Finally,
each state in A contributes one rule of type D, and hence we have one
such rule in our case. Altogether, |R| = 10.

Thus, (a), (b) and (d) are true.

. For the grammar in (a) we have L(G) = {wy, wo, ..., wi}*. In fact, each
word belonging to the language on the right-hand side can clearly be de-
rived from S, so that L(G) D {wy,wsy, ..., wg}*. On the other hand, by
induction on the number of derivations, we easily show that any word in
(NUX)* which can be derived (in any number of steps) from S belongs
to {S,wy,ws,...,wr}*, and in particular L(G) C {wy,wa, ..., wg}*
Since L(G) is regular, there exists a regular grammar equivalent to G.

If R in (b) consists of the rules

e S—aS|e,



and R’ consists of
e S—aS|a’S e,
then R’ 2 R, yet L(G') = L(G) = {a}"*.
If R in (c) consists of the rules
e S—aS|e,
and R’ consists of
e S— Sala,

then RN R =0, yet L(G) = {a}* and L(G’") = {a}T, so that L(G") N
L(G) ={a}*.

If R in (d) consists of the rules
e S— 99| a,
and R’ consists of
e S— SS|b,
then RN R # 0, yet clearly L(G) N L(G") = 0.
Let (S,S55) € R and wy,ws, ..., wx € L(G). Then

S=—=55=—=555— ... =S = w w,. .. wy.
G G G G G

Hence L(G) O L(G)*. The inverse inclusion is trivial, and consequently

L(G)T = L(G).
Let M be a pushdown automaton as in (f), and let wy,ws, ..., wg €
L(M). Then (s,w;, €)= (s,e,¢) for 1 <4 < k. Therefore
(s, wrwy ... wy, €)= (s, wa ... wy, €)= (s, w3 ... wy, €)
5

(s, wr, €)= (s, €, ),

so that wywsy ... w, € L(M). Hence L(M) O L(M)", which implies
L(M) = L(M)". Thus, (a), (e) and (f) are true.



4. There exist only countably many describable languages, and hence
there exist only countably many Turing-accepted languages (whether
Turing-decidable or not).

Since »* is Turing-decidable, one of the sets in the union defining L,
in (b) is ¥*, and therefore L; = ¥*. On the other hand, let Ly be
any Turing-undecidable language. Then L§ is also Turing-undecidable.
The union defining Lo contains therefore both Ly and L§, so that
Ly = 3%

The collection of functions with the property in (c) is clearly uncount-
able, and hence not every such function has a Turing machine comput-
ing it.
The number n € Z, is represented by the word 1"0. For the function
f in (d) we have

f(1"0) = 1"0(1"0)%1"0 = 1"0*1"0.

The right-hand side represents the point (n,0,2n) € Zi, so that M
computes the function given by

g13(n) = (n,0,2n),  neZy,.

Obviously, g3 is injective but not surjective.

Thus, (b) and (d) are true.



