
Final #1

Mark all correct answers in each of the following questions. In parts 2.d
and 3.a fill in the missing quantities.

1. We are given a graph G with non-negative weights attached to its
edges. The graph is disassembled by deleting consecutively its vertices.
At each stage, one vertex and all the edges incident to it (which were
not deleted in former stages) are deleted. The cost of deleting a vertex
is the product of the weights of the edges deleted along with the vertex.
(This product is taken as 0 if the vertex has no edges incident to it at
the time it is deleted.) The total cost of disassembling the graph is the
sum of the costs at all stages. We are looking for an ordering of the
vertices so that, when deleting the vertices according to this order, the
cost is minimal.

(a) There exists an ordering for which the total cost is 0 if and only
if each vertex of the graph is incident to at least one edge of 0
weight.

(b) Suppose G is connected (i.e., for each pair of vertices, there is a
path connecting them). Then there exists an ordering for which
the total cost is 0 if and only if the graph, obtained from G by
deleting all edges with positive weights, is still connected.

(c) For n ≥ 2, the set of all total costs associated with the n! orderings
of V contains at most n!/2 distinct numbers.

(d) Suppose we order V according to the greedy algorithm, as follows.
At each stage we delete that vertex whose deletion yields minimal
possible cost. We can implement this solution in polynomial time,
but it is not necessarily the optimal solution.

1

(e) Recall the algorithm presented in class for solving the traveling
salesman problem in time O(P (n)2n) (where P is some polyno-
mial). Employing a similar idea, we can solve our problem in time
O(P (n)2n).

(f) In the preceding parts, we assumed that the cost associated with
the deletion of a vertex is

∏k
i=1 wi, where w1, w2, . . . , wk are the

weights of the edges incident to that vertex at the stage it is
deleted. Now suppose the cost is

∑k
i=1 f(wi), where f : R−→R

is some increasing function. Then there exists a polynomial algo-
rithm to find the optimal ordering of V .

2. We are given an array v of length n, whose entries are elements of a
certain set A. An element x ∈ A is a majority element of v if more
than n/2 of the entries of v are equal to x.

(a) Assume first that a total order relation ≺ is defined on A, such
that, given x, y ∈ A one can check in time O(1) whether x ≺
y, x = y or x � y. Then one can find out whether there exists
a majority element in v, and if so find this element, as follows:
First, sort v. Next, scan v, recording the lengths of the blocks
consisting of equal elements. Finally, check whether any of these
lengths exceeds n/2. The algorithm takes O(n log n) time.

(b) By finding a majority element of an array, we have in particular
sorted at least half of this array. Since sorting an array of length
n/2 cannot be done in less than O((n/2) log(n/2)) = O(n log n)
time, it is impossible to find an algorithm which takes o(n log n)
time.

(c) Assume now that we do not have an order relation defined on
A. The following algorithm solves the problem in this case: First
find out (recursively) whether the first half of the array contains a
majority element, say x, and whether the second half of the array
contains a majority element, say y. If neither such an x nor such
a y exist, v does not contain a majority element. If x and/or y
exist, check directly whether any of them is a majority element.

(d) The algorithm in the preceding part works in time Θ(???).

2

(e) An element x ∈ A has a sizeable representation in v if at least a
quarter of the entries of v are equal to x. Assume again that we
have a total order relation on A. By employing (several times)
the algorithm for finding the k-th element of a set, we can find in
linear time all elements having a sizeable representation in v.

3. Given an array (x1, x2, . . . , xn) of integers, we want to count the number
of possible relations in terms of equality and inequality between all xi’s.
For example, if n = 3, then we have 13 possibilities:

(i) x1 = x2 = x3.

(ii) x1 = x2 < x3, x3 < x1 = x2, x1 = x3 < x2, x2 < x1 = x3, x2 =
x3 < x1.

(iii) x1 < x2 < x3, x1 < x3 < x2, x2 < x1 < x3, x2 < x3 < x1, x3 <
x1 < x2, x3 < x2 < x1.

In general, denote by an the number of all possibilities, and by ani the
number of those possibilities in which i of the relations are inequalities
and the other n− 1− i are equalities. (The splitting above into three
classes was done according to the value of i.) Obviously, an =

∑n−1
i=0 ani

for each n. The idea is to employ dynamic programming for calculating
the ani’s. In fact, the ani’s satisfy the recurrence:

ani =


f(i)an−1,i + g(i)an−1,i−1, 1 ≤ i ≤ n− 2,
an−1,0(= 1), i = 0,
nan−1,n−2(= n!), i = n− 1.

(a) f(i) =???, g(i) =???.

(b) The calculation of all aki’s with 0 ≤ i < k ≤ n (and thereby an)
from bottom to top using the recursion takes Θ(n3) time.

(c) The number of all aki’s is approximately n2/2, so that a direct
implementation of the formula requires O(n2) space. However, it
is possible to never keep the values of more than n of the aki’s,
and in particular do with O(n) space.

(d) an = O(P (n)n!) for an appropriate polynomial P .

3

4. (a) We explained in class that it takes an exponential number of steps
to calculate the n-th Fibonacci number Fn recursively (directly
from the definition), but takes only O(n) steps if we calculate the
Fi’s successively, starting from i = 2, then i = 3, and so forth until
we get to i = n. In fact, this is not correct if we take into account
the fact that the Fibonacci numbers grow very fast, and we shall
need to store the calculated values as arrays, corresponding to the
expansion of the numbers in some base (say, binary). Since the
length of a number n is approximately proportional to log n, the
number of steps required to calculate Fn in this method is in fact
Θ(n log n).

(b) A polynomial will be called (for the purposes of this question)
squarish if it is of the form

∑L
k=0 akx

k2
. (For example, the poly-

nomial 2x100 − 5x9 − 17 is squarish.) We are given two squarish

polynomials P (x) =
∑b

√
nc

k=0 akx
k2

and Q(x) =
∑b

√
nc

k=0 bkx
k2

, of de-
grees not exceeding n, and need to find their product P (x)Q(x) =∑2n

m=0 cmxm (which is non-squarish in general). Consider the fol-
lowing two options for calculating the product (namely, the 2n+1
coefficients cm). The first option is to multiply the polynomials in
the classical way. That is, we start with all cm’s being 0. Then,
for each i and j between 0 and b

√
nc we increase ci2+j2 by aibj.

The second option is to use FFT. Due to the special form of the
polynomials, it is faster to use the classical method rather than
FFT.

(c) We are given two vectors u = (u1, u2, . . . , un),v = (v1, v2, . . . , vn) ∈
Rn. The coordinates of each vector distinct positive numbers.
These coordinates cannot be calculated precisely, but they can be
approximated arbitrarily well, and in particular it is possible to
decide, for any 1 ≤ i < j ≤ n, whether ui < uj or ui > uj (and
whether vi < vj or vi > vj) in time O(1). It is required to per-
mute the coordinates of each vector, thus obtaining the vectors
u′ = (uσ(1), . . . , uσ(n)),v

′ = (vτ(1), . . . , vτ(n)), in such a way that
the inner product 〈u′,v′〉 =

∑n
i=1 uσ(i)vσ(i) will be minimal. Even

though the vectors are not precisely known, it is possible to find
such permutations σ and τ . Moreover, this can be done in time
Θ(n2), but not in less.

(d) In the strong pseudo-primality test, the prime 2 plays a unique

4

role. However, it should not. In fact, consider the following test:
We are given integers n and a, with 0 < a < n and gcd(3a, n) = 1.
Write n− 1 = 3tm, where gcd(m, 3) = 1. If am 6≡ 1 (mod n) and
a3lm 6≡ −1 (mod n) for l = 0, 1, . . . , t − 1, then output “n is
composite”, otherwise “undecided”. This test is correct, namely,
if it returns “n is composite”, then indeed n is composite. The
only problem is that it is not necessarily the case that, if n is
composite, then the test says so for at least half of the possible
a’s.

(e) Consider the problem, discussed in class, of job scheduling with
deadlines. Assume that, unlike the case we discussed, each job i
has its own duration Ti. Then it is still true that a set of jobs is
acceptable if and only if, when ordering it according to deadlines,
we obtain an acceptable ordering.

Solutions

1. The characterization in (a) is false. In fact, let G be the complete graph
on 4 vertices v1, v2, v3, v4, where the weights of (v1, v2) and (v3, v4) are 0,
and all other weights are strictly positive. Then every vertex is incident
to a 0 weight edge, but the cost of disassembling the graph is positive
for every ordering of the vertices.

The characterization in (b) is also false. In fact, let G be a path graph
on 4 vertices v1, v2, v3, v4, where v1 and v4 are the leaves, the edge
(v2, v3) is of positive weights and the other edges are of weight 0. The
graph is connected, the graph obtained by deleting the 0 weight edges
is disconnected, yet by deleting v2 and v3 first we can disassemble the
graph at 0 cost.

Any two orderings, differing only in the last two entries, yield the same
total cost. Hence there are no more than n!/2 possible distinct costs.

The greedy algorithm fails in general to give the optimal algorithm. For
example, let G be the complete graph on 3 vertices, the edge weights

5

being 1, 1/2 and 1/4. The greedy algorithm yields an ordering with
total cost 9/8, whereas the optimum is easily seen to be only 3/4.

For S ⊆ V , Denote by C(S) the minimal possible cost of deleting the
vertices in S only. Thus we need to calculate C(V) and find an ordering
yielding this value. Now C(S) =

∏
u∈V −{v} w(v, u) for S = {v}. (The

product is considered as 0 if it is empty. If it is not, then w(v, u) is
considered as 1 for non-existing edges (v, u).) We calculate C(S) for
increasingly larger sets V using the recursion:

C(S) = min
v∈S

(
C(S − {v}) +

∏
u∈V −S

w(v, u)

)
.

The calculation is carried for (almost) all 2n subsets of V , and for each
of them takes O(n2) time (which can be lowered to O(n) with little
effort). Knowing all the values C(S), it is easy to find an optimal
ordering. Thus we can find an optimal ordering in time O(P (n)2n).

With the cost function of part (f), the total cost associated with any
ordering of the vertices is the sum of costs of all edges of the graph.
Thus, all solutions are optimal, and in particular we can present an
optimal solution in polynomial time.

Thus, (c), (d), (e) and (f) are true.

2. The algorithm suggested in (a) takes O(n log n) time for the sorting,
and then another O(n) for checking whether any of the blocks of the
sorted array is longer than half the whole array. Hence it works in
O(n log n) time. The considerations in (b) are false, as they certainly do
not apply when there is no majority element in the array. Moreover, the
conclusion of those considerations, whereby it is impossible to find an
algorithm which takes o(n log n) time, is also false. In fact, a majority
element, if one exists, must be equal to the median of the array. Now
we can find the median of the array, and then check if it is a majority
element, in linear time. Since a majority element of an array must
be a majority element in at least one of the halves of the array, the
algorithm in (c) is indeed correct. The algorithm calls itself twice for
n/2 (if n is even), and then finishes the work in O(n) time. Hence,

6

denoting by an the number of steps it takes, we have an ≤ 2an + Cn
for some constant C. Hence an = Θ(n log n). An element with a
sizeable representation, if one exists, must be equal to the element
ranking number k in the array for at least one of the following three
k’s: k = dn/4e, k = 2·dn/4e, k = 3·dn/4e. Hence by finding these three
elements of the array, and checking for each whether it is of sizeable
representation, we indeed find all these elements in linear time.

Thus, (a), (c) and (e) are true, and the algorithm in (c) works in
Θ(n log n) time.

3. Each arrangement of x1, x2, . . . , xn is obtained from some arrangement
of x1, x2, . . . , xn−1 by adding xn at an appropriate place, either as equal
to one of the existing sets of equal elements or as a new set. More pre-
cisely, any arrangement with i > 0 inequalities and n − 1 − i > 0
equalities (and thus counted in ani) is obtained either from an arrange-
ment of n − 1 elements with i inequalities and n − 2 − i equalities
by adding xn as equal to one of the i + 1 existing groups or from an
arrangement of n − 1 elements with i − 1 inequalities and n − 1 − i
equalities by adding xn as a separate group. Hence for 1 ≤ i ≤ n − 2
we have ani = (i + 1)an−1,i + (i + 1)an−1,i−1. The number of all aki’s
is approximately n2/2, and the calculation of each in its turn takes
O(1) time, so that the whole calculation takes Θ(n2) time. It suffices
to keep one array of length n. At the end of stage k, places 0 through
k − 1 of this array contain the values of the aki’s. At the next stage
we fill in the values of the ak+1,i’s, starting from i = k and going down
to i = 0. Since the recursion never uses larger values of the second
index, we shall have all required (and updated) data when getting to
any calculation.

For each fixed l, the number of arrangements with l equal pairs and
n − l − 1 inequalities is

(
n

n−2l,2,2,...,2

)
(n − l)!. Since this expression is

Ω(nl · n!), we have an ≥ an,n−l−1 = Ω(nl · n!) for each l.

Thus, only (c) is true, and f(i) = g(i) = i + 1.

7

4. (a) False. It is true that the computations become more and more
lengthy as we proceed. Since Fi ≈ cλi (where λ = (1+

√
5)/2), we

need Θ(log Fi) = Θ(i) time to find each Fi after Fi−2 and Fi−1 are
known. Hence the whole computation takes

∑n
i=2 Θ(i) = Θ(n2)

time.

(b) True. The direct method takes O(1) time for each i and j between
0 and b

√
nc, altogether O(n), whereas when using FFT we do not

benefit (at least at the last stage) from the special form of the
polynomials, so that we still need O(n log n) time.

(c) False. According to the conditions, we can sort the arrays, u
according to increasing order and v according to decreasing order,
in O(n log n) time. We claim that the resulting vectors u′ and v′

satisfy the required optimality condition. The proof is exactly the
same as the one we gave for the correctness of the greedy algorithm
for the problem of scheduling, when the criterion is minimization
of the total time the jobs spend in the system.

(d) False. As an example, take n = 7, a = 2. Then t = 1, m = 2.
Since 22 6≡ 1 (mod 7) and 22 6≡ −1 (mod 7), the test returns “7 is
composite”.

(e) True. Clearly, if there exists an acceptable ordering, then the
set is acceptable. Now assume the set is acceptable. We shall
prove by induction on the number n of jobs that, by ordering the
jobs according to increasing deadlines, we obtain an acceptable
ordering. In fact, this is trivial for n = 1. Suppose our claim
is correct for n jobs, and let an acceptable set of n + 1 jobs be
given. Take an acceptable ordering of the jobs. We claim that, by
postponing the job n+1 with the last deadline to be the last, and
performing all jobs currently planned to be done after it Tn+1 time
units earlier than planned, we still obtain an acceptable ordering.
Indeed, job n + 1 will now terminate at a time when some other
job was originally planned to terminate. Since job n + 1 has the
latest deadline, this means that job n + 1 will still terminate on
time. Regarding the other jobs, since they are now scheduled to be
performed earlier, there is certainly no problem. Thus there exists
an acceptable ordering in which the job with the last deadline is
performed last. Ignoring now job n + 1, we have an acceptable

8

ordering of the first n jobs, which, by the induction hypothesis,
can be ordered according to deadlines. This proves the claim.

9

