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Abstract

This work presents a novel method for accurate estimation of perspective transformations in

images. Recent publications have shown that considering a rich geometric transformation model of

salient local regions, is extremely bene�cial for the purpose of point matching.Yet, those methods

are not used extensively for two reasons. First, because they are computationally more demand-

ing, second reason is that the estimation of the geometric transformations are of limited accuracy

and therefore the usage of them is limited. Moreover, in typical scenes, signi�cant portions of the

scene are low-textured and cannot be considered salient. Thus their transformation between im-

ages can be recovered only by related global transformations. It has been shown that considering

a few local point matches in consensus can be very useful in estimating global transformation and

rejecting outliers. Though these methods do not typically utilize information from local region

transformations. In this work, we propose a mechanism that forges a consensus between local

region correspondences and their underlying geometry , that allows the estimation of richer global

transformations. We demonstrate how this idea enables the estimation of perspective transfor-

mations of planes, and locating many new point matches on practically texture-less areas of the

scene.

1 Introduction

One of the key variabilities in the appearance of an image is its underlying geometry. Images of the
same scene from di�erent angles, may look very di�erent. For the purpose of point matching, which is
the process of �nding corresponding scene points in two images, this variability has been intensively
explored in the last decade [1, 2, 3, 4], speci�cally regarding local patches. For many applications,
there are su�ciently good solutions in terms of the amount of matches, the portion of correct matches,
their accuracy in locations and the computational demand. But, there are many other applications
requiring improvement in on or more of these aspects.
The geometric variability of a local patch can be approximated as a�ne transformation. All the pop-
ular point matching methods [2, 4, 1] take into account some geometric variations, while accounting
for the full a�ne model has proved to be bene�cial [3, 1]. However, trying to estimate the geometric
transformation from small patches is of limited accuracy, insu�cient in many cases, and computation-
ally demanding. The key di�culty in estimating a�ne transformation from small regions lie in the
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Figure 1: The global deformation of the railroad is strongly projective (rectangle becomes trapezoid),
while the local deformation of each tie is well approximated by a�ne transformation (rectangle becomes
a parallelogram)

insu�ciency and low quality of available information. The �ip side of the local a�ne approximation,
is that estimating richer transformations, such as projective transformations of planes, cannot be ac-
curately estimated from small regions.
In this work, we show how forging a consensus between several local a�ne transformations of regions
that share the same scene plane, can be utilized to improve the local transformation estimation and
also allow accurate estimation of perspective transformation of the plane.

1.1 A�ne And Perspective Transformations

Assuming that the patches around the corresponding points lie entirely on a planar surface of the
scene, the geometric transformation between image patches can be described by a homography. This
creates a perspective transformation of the image patch around each point match. In small enough
region, the perspective transformation can e�ectively be approximated by an a�ne transformation.
This fact was explored in many previous research works. Taking this fact into account proved to be
extremely bene�cial in �nding point correspondences[3, 1]. In �gure (1) we see the local tangency
of perspective deformations to a�ne deformations. That is why the a�ne transformation estimation
from local regions have focuses many research interest.
In [1], a method to adaptively normalize the a�ne shape of every point match is suggested. In [4]
a method to normalize the a�ne transformation of detected region is suggested. In [3], a method to
simulate the space of a�ne transformations is suggested. These methods show considerable improve-
ment in terms of accuracy in position and performance when compared to methods that neglect these
geometric variations [2, 5].
We assume that we are provided region matches given by MSER after a�ne normalization. The nor-
malization is typically done using the measurements of the �rst and second order moments, to bring
all detected regions to a canonical reference frame, up to an unknown rotation which is solved using
standard methods [2]. An initial estimation of the a�ne transformation of a region enables predicting
the corresponding locations of neighboring points that shares the same plane. The expected prediction
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error grows lineally with the distance of the predicted point from the initial region, and is inversely
proportional to the size of the initial region. We demonstrate how such a prediction can be done
mutually between neighboring regions, and enables estimating the transformation of the union of the
regions. The union dramatically increases the size of the estimated region, thus improving the esti-
mation. It is also more likely to undergo signi�cant perspective transformations, which can now be
estimated to predict point matches in low textured areas of the plane, that are well beyond the initial
salient regions. Another advantage of estimating from a union of regions, is that it is signi�cantly less
probable to encounter outlier matches between very large regions, and thus - this process can also be
consider as an outlier rejection mechanism.

2 Estimation from Region Consensus

The process of estimating a�ne transformation between small image patches enables predicting the
locations of other local regions in their surroundings. We use [4] as an initializer for the method,
the output of this method is a list of region matches together with initial estimate of a�ne transfor-
mation, we assume this list includes large amount of false alarm and a rough estimate of the a�ne
transformation. These matches will be called phase zero region matches. Given a phase zero match,
the a�ne transformation Ĥ between the matching image patches can be estimated[6]. Using the a�ne
transformation of each region, we can start looking for mutual relations between proximate regions.
The transformation of every phase zero region is used to predict the transformation of neighboring
regions, and then be validated using the estimated transformations of these neighboring regions. This
is done as follows:

1. From each region in the source image [call it anchor region], we try to estimate the pixel locations
of other regions in the target image, using the region's local transform estimation.

2. Since local transformation are not expected to be accurate on farther regions, even if lying on
the same plane, we consider the distance between the current region to predicted regions in order
to adjust the expected prediction errors.

3. The expected prediction error is also adjusted to the extent of the current region.

4. Using this knowledge and an assumption of the typical a�ne estimation errors of local regions, we
can determine a maximum expected prediction error in estimating the locations of neighboring
patches in the target image.

5. Once we have an expected error, we compare the predicted location with the location derived
from the phase zero match of the neighboring region.

6. This comparison gives an estimate of the prediction error which is normalized by the expected
prediction error to get the normalized prediction error.

7. The same process is done vise verse, with the neighboring region predicting the location of the
anchor region in the target image. Yielding another normalized prediction error.

8. The maximum value of the two normalized prediction errors is then used as an agreement measure
between the regions. If it is smaller than a �xed threshold, we consider both regions to have a
co-planar consensus, and we unify them to one bigger phase one region.
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(a) From anchor (green) to neighbor (red) (b) From neighbor (green) to anchor (red)

Figure 2: Forging a consensus between a pair of regions. Blue axes represent the coordinate frame and
extent of the estimating region. The black line represents the distance to the most di�cult point to
predict. The little red lines represent the predicted error factor in both axes

9. This process is repeated until we cannot �nd any new consensus pairs.

10. Finally, resulted phase zero regions that does not meet the required extent demands for estimating
projective transformation are discarded.

11. We should note that outlier phase zero region matches are much less likely to forge a consensus
with neighboring regions. This prevents these regions from being considered as a part of bigger
union region, and are thus naturally discarded (phase 10).

The following sub-sections will elaborate on the more interesting phases mentioned above.

2.1 The e�ect of prediction distance and initial region size

Since a�ne transformations are mostly linear (neglecting the e�ect of translation), we can expect that
the location prediction error using an estimated a�ne transformation will grow almost linearly with
the distance of the neighboring point from the anchor region in the source image. Another theoretic
notion is that the size of the anchor region also linearly a�ects the expected error of the estimated
location of the neighboring region in the target image. in �gure (2) we can see an example of the region
consensus procedure. The important measures are the extent of the anchor region in it's coordinate
frame (in dotted blue), and the distance from the anchor centroid to the most di�cult neighbor point
to predict (a black line). The most di�cult point to predict is determined according to the formula:

argmax
p∈Ωneighbor

∥∥∥(‖Vanchor‖−2
< p− µanchor, Vanchor >, ‖Uanchor‖−2

< p− µanchor, Uanchor >)
∥∥∥

2
(1)

Where V,U are the un-normalized axes of the anchor region, and µ is the centroid point. Notice how
this expression quanti�es the projection of the translation between the centroid and the point p, on the
di�erent axes. Each projection is multiplied with the inverse of the norm for axis normalization. �nally,
each projection is multiplied once again in the inverse of axis norm to account for the importance of
region extent in that axis. i.e. the wider the region is in a certain axis, the easier it would be to predict
the transformation of point along that axis.
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(a) Predicted neighbor (green), neighbor given by phase

zero match (red)
(b) Predicted anchor (green), anchor given by phase zero

match (red)

Figure 3: Evaluating a consensus between a pair of regions in the target image.

equation (1) also introduces the notion of normalized expected prediction error. When we �nd the
point p that achieves the maximum, we can now know what error factor to expect from the location
prediction. Using this factor, we can decide on the feasibility of any candidate consensus.

2.2 Forging a consensus and perspective estimation

After introducing the notion of normalized expected prediction error, all we have to do decide if a pair
of anchor and neighbor region can be forged in a consensus, is to measure the mutual prediction errors
in the target image, normalize it, and threshold on some determined �xed threshold. In �gure(3), we
can see the mutual prediction results of the example given in (2). The prediction error is very visual
here. In a perfect consensus case, the red and the green regions should sit perfectly on top of each
other. Although the results in this example are far from perfect, this consensus is actually approved,
since after error normalization, this error goes below the �xed threshold. In the next phase, we see
that this decision was very helpful.
Like mentioned, if a pair of regions forge a consensus with normalized prediction error above a certain
threshold, they are uni�ed to create a bigger region. in �gure (4), we can see how the exact same
process is extended for the uni�ed region, only now the expected prediction error for prediction the
neighbor using the anchor is signi�cantly smaller - since the anchor region is bigger. This results in a
much more accurate target prediction of the new neighbor, as we can see in �gure (5). We should note
that any region can be added only to one union, this saves computational time and ambiguities, in
the expense of possible in-optimality. Finally, after applying this process on the group of all regions,
we have unions of regions that appear to be co-planar and to agree on local transformation. We can
use these unions to estimate the perspective transformation of the union from the source frame to the
target frame. This can be done very accurately, since the extent of the unions is very large, and thus
the expected error very small.
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(a) From anchor (green) to neighbor (red) (b) From neighbor (green) to anchor (red)

Figure 4: Forging a consensus between a pair of regions, when the anchor region is already a uni�ed
region of two phase zero regions. Prediction of neighbor target location is made much easier

(a) Predicted neighbor (green), neighbor given by phase

zero match (red)
(b) Predicted anchor (green), anchor given by phase zero

match (red)

Figure 5: Evaluating a consensus between a pair of regions in the target image.
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Figure 6: Typical result of the application

2.3 Post process: rejecting �lonely� regions

The process described in sub-section(2.2), may leave some of the regions outside any union. These
�lonely� regions are more likely to be coming from false region matches, since they couldn't found
any neighboring regions assessing their underlying transformation estimation. Of course, some �true�
matches may fail to �nd consensus, and thus rejected by this mechanism. In this manner, the proposed
algorithm acts as an outlier �lter.

3 Application: Matches of Arbitrary Points on the Plane

Since we have collected many co-planar local transformations to a more global transformation of the
plane, we can now predict the target image locations of arbitrary points in the source image that lie
on plane with now attached perspective transform estimation. The problem now is to determine which
estimated perspective transform is appropriate for applying on the desired point. Di�erent uni�ed
regions may correspond to di�erent scene planes, so the choice of the appropriate region and thus
perspective transform may be crucial. In this work, we make a reduction, that the scene has only
one highly-textured plane, and thus all uni�ed groups, as well as the desired point, lie on the same
plane. This reduces the decision to choosing the most appropriate phase one region with its underlying
transform estimation, to predict the desired point location in the target image. For this task, again the
notion of normalized expected prediction error comes to aid. We choose the region that has the smallest
normalized expected prediction error in predicting the target location of desired point. Naturally, this
results in regions that situate relatively close to the desired point in the source image, and have a long
extent in the direction of the translation vector between the region and the desired point.
To illustrate this ability, a MATLAB application has been created, in which 2 images of a mostly
planar scene can be loaded, and correspondences of arbitrary points on that plane can be found.

3.1 How to use the Matlab application

The use of the dedicated GUI is pretty straight forward, here are the standard steps:

1. Extract the code package, enter its root directory in matlab, and run the script 'setup.m'.
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Figure 7: The contribution of the consensus mechanism to arbitrary Point Matches Performance

2. Run 'ConsensusGui.m'. A simple GUI should be opened. Notice that 'Try it!' button is initially
deactivated.

3. Now hit 'Load Source Image' and choose a source image to work with. This will do some process
(�nding phase zero regions), so be patient.

4. Same goes for hitting 'Load Target Image'.

5. The two images should now appear in one �gure along side each other.

6. Now press process - this runs the actual algorithm proposed here.

7. Now 'Try it!' button is enabled, press it. Now you need to pinch a desired point in the left
image. The corresponding point immediately appears in the right image.

8. Hit 'Try it!' again to pinch another point.

9. If you want do load di�erent images, make sure you hit process after loading the images.

In �gure (6), we can see a typical result of the application after pinching a few points.

4 Test and Results

We have checked the performance of the point matching application on several standard feature match-
ing benchmark images given in[7]. To verify the contribution of the proposed consensus algorithm,
for each source image of the benchmark, we have sampled 100 random points and tried to predict it's
location in the target image. Since we have the ground truth homography from [7], we can measure the
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pixel error in the target image. We compare this error to the error produced by predicting the target
point using the collection of phase zero region matches in the same manner described in section (3).
We collect all the results from all the 10 benchmark image challenges that introduce viewpoint changes
('gra�ty' and 'wall') and present the pixel error histogram of both methods in �gure (7). Notice that
error above 100 pixels were discarded, for a more convenient presentation .Errors above 100 pixels
were seen only in the method without consensus, if we were to regard them, the mean error of the
methods without consensus would have been above 66 pixels. It is clearly evident how the consensus
mechanism prevents cases of very big error [all errors below 15 pixels], and signi�cantly improves the
overall accuracy of arbitrary point predictions.

5 Summary and future ideas

The ability to estimate the image transformations accurately, using a simple existing technique as
initializer and then considering region consensus, enabled us to accurately predict the location of
arbitrary points in the target image. We saw how the consensus mechanism increased accuracy and
enabled the consideration of more rich transformations like the perspective transform. The mechanism
also contributed for rejecting large prediction errors. The work here was under a reduction to mostly
planar scenes, but the idea can be certainly extended to more complicated situations, and richer
transformations. An immediate future development would be to detect situations of di�erent multiple
planes, and �nd an accurate consensus to every plane. This idea could also be accustomed to elastic
transformations, tough possibly with some algorithmic variations regarding the estimation model.
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