Figure ground segregation in video via averaging and color distribution

Introduction to Computational and Biological Vision 2013

Introduction

- Motivation:
- Sometimes it's quite important to be able track an object in a given video (tracking drivers in the road, identifying moving objects in night vision video etc.)

What are the approaches for segmenting a figure from a set (>1) of images (I.e. video file)?

- Main goal:

To achieve a high quality of figure ground segregation (good segmentation).

Assumptions

- Background: Known background OR unknown background
- Unknown background
- Camera: Stationary camera OR moving camera
- Stationary camera
- Lighting: Fixed lights OR varying lights
- Varying lighting

Approach and Method

- Step 1 - Averaging:

D Divide each frame of the video into fixed size blocks.

- Average each block (for all 3 components).
b Divide the video into sets of frames. For each set calculate the average.

Approach and Method (2)

- Step 2 - Segregation throw color distribution:
- Compute the absolute difference between the block values and the corresponding average

$$
F(x, y)=\left\{\begin{array}{cc}
I(x, y) & \text { if } \\
0(x, y)>\Gamma \\
0 & \text { otherwise }
\end{array}\right.
$$

Approach and Method (3)

- Step 3 - Locate object components:

I I had a sketch of the figure I want to segment but it wasn't accurate enough since there were a lot of noises.

- Only figures with size bigger then $24^{*} 24$ pixels considered as an object.
- Remove noises.
- Locate figures position

Approach and Method (4)

- Step 4 - "Magic wand"

Takes pixel and find all the pixels in the area that correspond to its color
\square Return binary mask of the figure pixels.

Segmented _(x, y) = binaryMask _($x, y) . *$ originalFrame _(x, y)

Some more examples

Conclusions

- The algorithm is done offline since it takes have calculations are made
- Thing that affect segmentation:
- Object size
- Object speed
- Object location
- Object color

Thank you ;)

