Using Evolutionary Algorithm to find
image segmentation

Yossef Kitrossky & Yoad Lewenberg
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Evolution

» Reducing image resolution
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80 generation of evaluation
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|60 generation of
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original image







Selection

» The best 10% individuals join to the next generation as
they are.

» For the last 90%:
Randomly choose 4 individuals.
The best one chosen as parent A.

In the same way parent B is chosen.
The offspring of A and B, be a member of the next generation.
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» Randomly choose pivot
» Randomly choose axis

» With some probability mutate the result
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» Randomly choose pivot
» Randomly choose axis

» With some probability mutate the result

Pivot = 54,
y axis




Mutation

» Method |
Flip random index
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Fitness Function

» Low variance in each segment.

» High derivative at boundary points
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At boundary point by x axis, % should receive high values
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» A=

At boundary point by y axis, g—; should receive high values
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Running time

» For n*n image:
» Creating the initial population.
» For every generation;
Ranking all the population
for every individual;
Pick parents
Merge
Mutate

» Total running time: -

O(p-n?)+0(g-(p-n?+pn?))) =0{(0g  -p-n?) =0(n?)
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Running time

» For n*n image:
» Creating the initial population.
» For every generation;
Ranking all the population
for every individual;
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Merge
Mutate

» Total running time:
O(pn*)+0(g-(p-n*+p(n")))=0(g p-n’) =0(n*)



