Using Evolutionary Algorithm to find image segmentation

Yossef Kitrossky \& Yoad Lewenberg

Evolutionary Algorithm

First Generation

- Random Matrix
- Circles and rectangle

First Generation

- Random Matrix
- Circles and rectangles

First Generation

- Random Matrix
- Circles and rectangle

First Generation

- Random Matrix
- Circles and rectangle

Mutation probability 0.02

Mutation probability 0.2

First Generation

- Random Matrix

- Circles and rectangles

Mutation probability 0.02

Mutation probability 0.2

Evolution

- Reducing image resolution

Evolution

Evolution

20 generation of evaluation according to $8^{* 8}$ resized image

Evolution

40 generation of evaluation according to $16 * 16$ resized image

Evolution

80 generation of evaluation according to $32 * 32$ resized image

Evolution

100 generation of evaluation according to 64*64 resized image

Evolution

160 generation of evaluation according to original image

Evolution

0

Selection

- The best I0\% individuals join to the next generation as they are.
- For the last 90% :
- Randomly choose 4 individuals.
- The best one chosen as parent A.
- In the same way parent B is chosen.
- The offspring of A and B, be a member of the next generation.

Merge

- Randomly choose pivot
- Randomly choose axis
- With some probability mutate the result

Merge

- Randomly choose pivot
- Randomly choose axis
- With some probability mutate the result

Merge

- Randomly choose pivot
- Randomly choose axis
- With some probability mutate the result

Mutation

Method I

Flip random index
Method 2
Add circle
Add rectangle
Smooth
Segment expansion

Mutation

- Method I

Flip random index
Method 2
Add circle
Add rectangle

Smooth
Segment expansion

Mutation

- Method I

Flip random index

- Method 2
- Add circle
- Add rectangle

- Smooth
- Segment expansion

Mutation

- Method |

Flip random index
Method 2
Add circle
Add rectangle

Smooth
Segment expansion

Mutation

- Method I

Flip random index
Method 2
Add circle
Add rectangle

Smooth
Segment expansion

Fitness Function

|=

2	2	2	2	2	2	2	2
2	2	2	2	2	2	2	2
2	2	2	2	2	2	2	2
2	2	2	4	4	4	4	4
2	2	2	4	4	4	4	4
2	2	2	4	4	4	4	4
2	2	2	4	4	4	4	4
2	2	2	4	4	4	4	4

Fitness Function

- |=

2	2	2	2	2	2	2	2
2	2	2	2	2	2	2	2
2	2	2	2	2	2	2	2
2	2	2	4	2	4	4	4
2	2	2	4	4	4	4	4
2	2	2	4	4	4	4	4
2	2	2	4	4	4	4	4
2	2	2	4	4	4	4	4

Fitness Function

| |=

Fitness Function

- $A=$

0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	1	1	1	1	1
0	0	0	1	1	1	1	1
0	0	0	1	1	1	1	1
0	0	0	1	1	1	1	1

Fitness Function

- Low variance in each segment.
- High derivative at boundary points

Fitness

- $A=$

0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	1	1	1	1	1
0	0	0	1	1	1	1	1
0	0	0	1	1	1	1	1
0	0	0	1	1	1	1	1

At boundary point by \times axis, $\frac{\partial I}{\partial x}$ should receive high values

Fitness

- $I_{x}=$

			${ }^{\circ}$			${ }^{\prime}$	

Fitness

- $A=$

0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	1	1	1	1	1
0	0	0	1	1	1	1	1
0	0	0	1	1	1	1	1
0	0	0	1	1	1	1	1
0	0	0	1	1	1	1	1

At boundary point by y axis, $\frac{\partial I}{\partial y}$ should receive high values

Fitness Function

- $\mathrm{I}_{y}=$

Fitness

$$
\begin{aligned}
& A_{0}=\left\{(i, j) \in(1, \ldots, n)^{2}: A(i, j)=0\right\}, \quad V_{0}=\operatorname{var}\left(\left\{I(i, j):(i, j) \in A_{0}\right\}\right), \\
& A_{1}=\left\{(i, j) \in(1, \ldots, n)^{2}: A(i, j)=1\right\}, V_{1}=\operatorname{var}\left(\left\{I(i, j):(i, j) \in A_{1}\right\}\right), \\
& I_{x}=\frac{\partial I}{\partial x}, I_{y}=\frac{\partial I}{\partial y} \\
& \Phi_{x}=\{(i, j): A(i, j) \neq A(i+1, j)\}, \psi_{x}=\Sigma_{(i, j) \in \boldsymbol{\Phi}_{x}} \frac{1}{\alpha+\left|I_{x}(i, j)+I_{x}(i+1, j)\right|}, \\
& \Phi_{y}=\{(i, j): A(i, j) \neq A(i, j+1)\}, \psi_{y}=\Sigma_{(i, j) \in \oplus_{y} y} \frac{1}{\alpha+\left|I_{x}(i, j)+I_{x}(i, j+1)\right|} \\
& a, b, c, d, \alpha>0 \\
& R(A)=a V_{0}+b V_{1}+c \psi_{x}+d \psi_{y}
\end{aligned}
$$

Image with noise

Image with noise

Running time

- For n *n image:
- Creating the initial population.
- For every generation;
- Ranking all the population
- for every individual;
- Pick parents
- Merge
- Mutate
- Total running time: -

$$
O\left(p \cdot n^{2}\right)+O\left(g \cdot\left(p \cdot n^{2}+p\left(n^{2}\right)\right)\right)=O\left(g \cdot p \cdot n^{2}\right)=O\left(n^{2}\right)
$$

Running time

- For $\mathrm{n}^{*} \mathrm{n}$ image:
- Creating the initial population.
- For every generation;
- Ranking all the population
- for every individual;
- Pick parents
- Merge
- Mutate
- Total running time:

$$
O\left(p \cdot n^{2}\right)+O\left(g \cdot\left(p \cdot n^{2}+p\left(n^{2}\right)\right)\right)=O\left(g \cdot p \cdot n^{2}\right)=O\left(n^{2}\right)
$$

$$
p, g \geq O(n)
$$

Running time

- For $\mathrm{n}^{*} \mathrm{n}$ image:
- Creating the initial population.
- For every generation;
- Ranking all the population
- for every individual;
- Pick parents
- Merge
- Mutate
- Total running time:

$$
O\left(p \cdot n^{2}\right)+O\left(g \cdot\left(p \cdot n^{2}+p\left(n^{2}\right)\right)\right)=O\left(g \cdot p \cdot n^{2}\right) \geq O\left(n^{4}\right)
$$

$$
p, g \geq O(n)
$$

