Using Evolutionary Algorithm to find image segmentation

Yossef Kitrossky & Yoad Lewenberg

- Random Matrix
- Circles and rectangle

- Random Matrix
- Circles and rectangles

- Random Matrix
- Circles and rectangle

- Random Matrix
- Circles and rectangle

Mutation probability 0.02

Mutation probability 0.2

- Random Matrix
- Circles and rectangles

Mutation probability 0.02

Mutation probability 0.2

Reducing image resolution

20 generation of evaluation according to 8*8 resized image

D

40 generation of evaluation according to 16*16 resized image

80 generation of evaluation according to 32*32 resized image

100 generation ofevaluation according to64*64 resized image

160 generation of evaluation according to original image

Selection

- The best 10% individuals join to the next generation as they are.
- For the last 90%:
 - Randomly choose 4 individuals.
 - The best one chosen as parent A.
 - In the same way parent B is chosen.
 - > The offspring of A and B, be a member of the next generation.

Merge

- Randomly choose pivot
- Randomly choose axis
- With some probability mutate the result

Merge

- Randomly choose pivot
- Randomly choose axis
- With some probability mutate the result

Merge

- Randomly choose pivot
- Randomly choose axis
- With some probability mutate the result

Method I

Flip random index

Method 2

- Add circle
- Add rectangle
- Smooth
- Segment expansion

Method I

Flip random index

Method 2

- Add circle
- Add rectangle
- Smooth
- Segment expansion

Method I

- Flip random index
- Method 2
 - Add circle
 - Add rectangle
 - ► Smooth
 - Segment expansion

- Method I
 - Flip random index
- Method 2
 - Add circle
 - Add rectangle
 - Smooth
 - Segment expansion

Method I

- Flip random index
- Method 2
 - Add circle
 - Add rectangle
 - Smooth
 - Segment expansion

2	2	2	2	2	2	2	2
2	2	2	2	2	2	2	2
2	2	2	2	2	2	2	2
2	2	2	4	4	4	4	4
2	2	2	4	4	4	4	4
2	2	2	4	4	4	4	4
2	2	2	4	4	4	4	4
2	2	2	4	4	4	4	4

2	2	2	2	2	2	2	2
2	2	2	2	2	2	2	2
2	2	2	2	2	2	2	2
2	2	2	4	Z	4	4	4
2	2	2	4	4	4	4	4
2	2	2	4	4	4	4	4
2	2	2	4	4	4	4	4
2	2	2	4	4	4	4	4

2	2	2	2	2	2	2	2
2	2	2	2	2	2	2	2
2	2	2	2	2	2	2	2
2	2	2	4	4	4	4	4
2	2	2	4	4	4	4	4
2	2	2	4	4	4	4	4
2	2	2	4	4	4	4	4
2	2	2	4	4	4	4	4

► A=

0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	1	1	1	1	1
0	0	0	1	1	1	1	1
0	0	0	1	1	1	1	1
0	0	0	1	1	1	1	1
0	0	0	1	1	1	1	1

- Low variance in each segment.
- High derivative at boundary points

► A=

D

0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	1	1	1	1	1
0	0	0	1	1	1	1	1
0	0	0	1	1	1	1	1
0	0	0	1	1	1	1	1
0	0	0	1	1	1	1	1

At boundary point by x axis, $\frac{\partial I}{\partial x}$ should receive high values

► |_x=

0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	1	1	0	0	0	0
0	0	1	1	0	0	0	0
0	0	1	1	0	0	0	0
0	0	1	1	0	0	0	0
0	0	1	1	0	0	0	0

► A=

D

0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	1	1	1	1	1
0	0	0	1	1	1	1	1
0	0	0	1	1	1	1	1
0	0	0	1	1	1	1	1
0	0	0	1	1	1	1	1

At boundary point by y axis, $\frac{\partial l}{\partial y}$ should receive high values

► I_y=

0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	-1	-1	-1	-1	-1
0	0	0	-1	-1	-1	-1	-1
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0

$$\begin{split} A_0 &= \{(i,j) \in (1, \dots, n)^2 : A(i,j) = 0\}, \quad V_0 = \operatorname{var}(\{I(i,j) : (i,j) \in A_0\}), \\ A_1 &= \{(i,j) \in (1, \dots, n)^2 : A(i,j) = 1\}, V_1 = \operatorname{var}(\{I(i,j) : (i,j) \in A_1\}), \\ I_x &= \frac{\partial I}{\partial x}, I_y = \frac{\partial I}{\partial y} \\ \Phi_x &= \{(i,j) : A(i,j) \neq A(i+1,j)\}, \ \psi_x = \Sigma_{(i,j) \in \Phi_x} \frac{1}{\alpha + |I_x(i,j) + I_x(i+1,j)|}, \\ \Phi_y &= \{(i,j) : A(i,j) \neq A(i,j+1)\}, \ \psi_y = \Sigma_{(i,j) \in \Phi_y} \frac{1}{\alpha + |I_x(i,j) + I_x(i,j+1)|} \\ a, b, c, d, \alpha > 0 \end{split}$$

 $R(A) = aV_0 + bV_1 + c\psi_x + d\psi_y$

Image with noise

Image with noise

Running time

- For n*n image:
- Creating the initial population.
- For every generation;
 - Ranking all the population
 - for every individual;
 - Pick parents
 - Merge
 - Mutate
- Total running time: -

 $O(p \cdot n^2) + O(g \cdot (p \cdot n^2 + p(n^2))) = O(g \cdot p \cdot n^2) = O(n^2)$

Running time

- For n*n image:
- Creating the initial population.
- For every generation;
 - Ranking all the population
 - for every individual;
 - Pick parents
 - Merge
 - Mutate
- Total running time:

 $O(p \cdot n^2) + O(g \cdot (p \cdot n^2 + p(n^2))) = O(g \cdot p \cdot n^2) = O(n^2)$

 $p,g \ge O(n)$

Running time

- For n*n image:
- Creating the initial population.
- For every generation;
 - Ranking all the population
 - for every individual;
 - Pick parents
 - Merge
 - Mutate
- Total running time:

 $O(p \cdot n^2) + O(g \cdot (p \cdot n^2 + p(n^2))) = O(g \cdot p \cdot n^2) \ge O(n^4)$

 $p,g \geq O(n)$