Using Evolutionary Algorithm to find
image segmentation

Yossef Kitrossky & Yoad Lewenberg

Evolutionary Algorithm

First Generation

\ 4

Population

Evolutionary Algorithm

First Generation

Population

\ 4 \ 4

Individual Individual
B

Evolutionary Algorithm

First Generation

Population

3 § pick

Individual Individual
A B

/ MErge

Individual
@

Evolutionary Algorithm

First Generation

\ 4

Population

3 § pick

Individual Individual

Merge

Evolutionary Algorithm

First Generation

Population

I

4

Individual Individual

g,
D
N

/I"

B
/ merge
Individual

@
Iy nAUCEaEion

Individual

C’

UOIBIOUS

¥

New Population

First Generation

- Random Matrix
- Circles and rectangle

First Generation

- Random Matrix
- Circles and rectangles

First Generation

- Random Matrix

First Generation

- Random Matrix

Mutation probability 0.02 Mutation probability 0.2

First Generation

- Circles and rectangles

Mutation probability 0.2

Mutation probability 0.02

Evolution

» Reducing image resolution

a a
128%128 64%64

il
me

1616

8*8

Evolution

Evolution

20 generation of evaluation
according to 8*8 resized
image

Evolution

40 generation of evaluation
according to 16™16 resized
image

Evolution

80 generation of evaluation
according to 32*32 resized
image

Evolution

FEE X

|00 generation of
evaluation according to
6464 resized image

Evolution

|60 generation of
evaluation according to
original image

Selection

» The best 10% individuals join to the next generation as
they are.

» For the last 90%:
Randomly choose 4 individuals.
The best one chosen as parent A.

In the same way parent B is chosen.
The offspring of A and B, be a member of the next generation.

Merge

» Randomly choose pivot
» Randomly choose axis

» With some probability mutate the result

Merge

» Randomly choose pivot
» Randomly choose axis

» With some probability mutate the result

Merge

» Randomly choose pivot
» Randomly choose axis

» With some probability mutate the result

Pivot = 54,
y axis

Mutation

» Method |
Flip random index

» Method 2

» Add circle

» Add rectangle
» Smooth

» Segment expansion

Mutation
» Method |

Flip random index

» Method 2

Add circle
Add rectangle

Smooth

Segment expansion

Mutation
» Method |

Flip random index

* R Yy®

*

v v VvV Vv

Mutation

4

» Method 2

» Add circle
» Add rectangle

Smooth

v Vv

Segment expansion

Mutation

» Method |
Flip random index

» Method 2

» Add circle

» Add rectangle

Smooth

v Vv

Segment expansion

Fitness Function

}|= 2 2 2 2
2 2 2 2
2 2 2 2
2 2 2 4
2 2 2 4
2 2 2 4
2 2 2 4
2 2 2 4

Fitness Function

» |= 2 2 2 2
2 2 2 2
2 2 2 2
2 2 2
2 2 2
2 2 2
2 2 2
2 2 2

Fitness Function

y =

Fitness Function

}A= 0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 1
0 0 0 1
0 0 0 1
0 0 0 1

Fitness Function

» Low variance in each segment.

» High derivative at boundary points

Fitness

» A=

0 1
0 1
0 1
0 1
0 1

At boundary point by x axis, % should receive high values

Fitness

y | =

X

Fitness

» A=

At boundary point by y axis, g—; should receive high values

Fitness Function

b Iy=

Fitness

Ag={, N e, ..)2 A4 =0}, Vy=var({I(ij): (i,j) € 45}),

Al = {-(lx.ﬂ = {11 iy ﬂ}z : A(h_ﬂ — 1}1 I"Tl — "-FElI":{f(i!:,_j'-:}': {;!:Jj} = Al}:}s

al al

Io=—,I, =—
T ooa9x Y ay

1
@, = {(6,/): AL # Ali + 1,)}, Y= Ztpess 3 LG+ 1.+ 1, 7))
1

&, ={(1,): A) = AGj + 1)} ¥y = 2eden g T) + LG + D)
a b, c,d, o>=0

R(A) = aVy + bV, + cr, + dip,,

Image with noise

Image with noise

BRI s T TR T
' T R PR T S

Running time

» For n*n image:
» Creating the initial population.
» For every generation;
Ranking all the population
for every individual;
Pick parents
Merge
Mutate

» Total running time: -

O(p-n?)+0(g-(p-n?+pn?))) =0{(0g -p-n?) =0(n?)

Running time

» For n*n image:
» Creating the initial population.
» For every generation;
Ranking all the population
for every individual;
Pick parents
Merge
Mutate

» Total running time:

O(p-n?)+0(g-(p-n?+pn?))) =0{(0g -p-n?) =0(n?)
p.g=0(n)

Running time

» For n*n image:
» Creating the initial population.
» For every generation;
Ranking all the population
for every individual;
Pick parents
Merge
Mutate

» Total running time:
O(pn*)+0(g-(p-n*+p(n")))=0(g p-n’) =0(n*)

