GRAPE DETECTION PROJECT
 by:

Eran Geva
Eran Tomer

Goal: Grape Segmentation

- Input: Vines' images with grapes
- Output: boolean matrix of image's size with:
- 1 if the matching pixel on the image is on a grape
- 0 if it is not

Phases

1. Reducing the image's color numbers and deriving it.
2. Eliminating non-grape points by:

- Crowded mask
- Angle mask
- Color masks

3. Image clean-up by multicross mask
4. Eliminating remaining non-grape points by Bagel mask
5. Another image multicross mask clean-up

Color reduction

- We note that by mapping similar colors to a same color we can find outlines easily
- We want to find that mapping dynamically.
- Use clustering algorithm on the colors.

Color reduction

- The studied clustering algorithm input:
- All colors as vectors of <red, green, blue>
- Expected number of clusters $-\mathrm{k}=10$
\square On the output grapes resemble solid color concentric circles with similar size.

Deriving clustered image

- We'll derive the clustering output for easier detection

Crowded mask

- Density of edges in grapes is bounded: less than background (grass) but more than other regions (leafs).
- Find the edge density and quantity of the most frequent gradients around the pixel
- Those densities that are not on the measured bounds will be eliminated as non-grapes

Crowded mask output

Red - regions not eliminated that contain true grapes
Blue - eliminated regions without true grapes
Yellow - regions not eliminated without true grapes (false positive)
Light blue - eliminated regions that contain true grapes (false negative)

Angle mask

- Grape shape is round so gradient angle around it will be close to uniform.
- Bucketing of gradient angles and histogram

Color masks

- Grapes are green have a certain range of green color part
- Mostly grapes are shadowed by leafs, so their brightness is bounded

Bagel mask

- Grape's outline gradient is round its size is uniformic. Also its inside is relatively empty.
- Build 2 masks shown on the drawing:
- The inside - noted as green
- The bagel - noted as white
- The bagel's average diameter is
 equal to the average grape diameter, empirically measured.
\square Activate the masks around each point on the edge map generated by previous phases.

Bagel mask

- If the inside (green) around the point has too many edge - eliminate it
- Find the most frequent edges on the bagel (white) around the points - if their number is not between bounds, eliminate the point.

Multicross mask

- Some phases generate segments too small to be grapes.
- Grapes are usually convex
- Convolve the segmentation map with each kernels alternately a number of times:

- Eliminate points with a low result

Final result

multicross mask input

Red - regions not eliminated that contain true grapes
Blue - eliminated regions without true grapes
Yellow - regions not eliminated without true grapes (false positive)
Light blue - eliminated regions that contain true grapes (false negative)

