
Grape Detection Project report
By Eran Geva and Eran Tomer

Goal
Writing an application detecting grapes in an image
Input: Vines’ images with grapes
Output: boolean matrix of image’s size with:

• 1 if the matching pixel on the image is on a grape
• 0 if it is not

Methodology
Initially all segmentation points in the output are tagged as potential grapes.
Then across multiple phases, we eliminate points with low likelihood of being tagged
as a grape.
Preprocessing phase:

1. Reducing the image’s color numbers.
2. Extracting the gradient of the reduced color image.

Elimination phase:
1. Eliminating non-grape points by:

� Crowded mask
� Angle mask
� Color masks

2. Image clean-up by multicross mask
3. Eliminating remaining non-grape points by Bagel mask
4. Another image multicross mask clean-up

Preprocessing – color reduction
We note that if we reduce the number of colors in the image by mapping similar
colors to a same color we can find outlines easily.
Since there exist a wide array of image scenes, a hardcoded color mapping is not
practical. We wish to find that mapping dynamically.
For obtaining this we use a clustering algorithm on the colors with the input:

• All colors in the image as vectors of <red, green, blue>
• Expected number of clusters - k

The output is an image where each pixel has an integer value in [1 .. k].
After testing the clustering algorithm with various k values we decided on k=10.
Higher k values resulted with negligible contribution yet the running time increased
significantly.
Lower k values resulted with a mapped a wide range of colors to a same cluster thus
vital image information was lost.
On the output grapes resemble solid color concentric circles with similar size.

Original image K-Clustering output

Preprocessing – reduced color image derivation
The clustering image colors are arbitrary but their edges are eminent for grape
detection.
We extract the gradient size and direction of the clustered image.
Let us denote this as the clustered gradient image .

K-Clustering gradient sizes

Elimination phase 1 - Independent criteria
As we mentioned, initially all segmentation points in the output are tagged as
potential grapes. Now we’ll present several independent criteria masks in which some
pixels will be re-tagged as non-grapes (eliminated).
Following this phase we’ll apply several incremental phases.

Crowded mask
A grape color is relatively uniform, unlike other areas in the image, therefore grapes’
colors are expected to be clustered to a small number of clusters. As a result of this
the density of edges in the clustered gradient image is bounded around points
contained in grapes. In other words, since the depth, color and surface discontinuity
are relatively rare around grape points, the density of edges is expected to be low.
Also we see that density of edges in grapes is lower than in the background (grass) but
higher than in other regions (leafs).
For each pixel on the clustered gradient image we measure the surrounding box’s
edge density by:

1. Total edge quantity.
2. The quantity of most frequent gradient sizes.

Empirically we tested various images and searched for boundaries which generate
minimal errors and maximal true-eliminations.
We eliminate as non-grapes the pixels outside those boundaries.

Clustered image Crowded mask output

Legend for each pixel:
 Optimal – no grape Optimal – grape
Eliminated Blue – eliminated regions

without true grapes
Light blue - eliminated
regions that contain true
grapes (false negative)

Still not tagged Yellow - regions not
eliminated without true
grapes (false positive)

Red – regions not
eliminated that contain
true grapes

Crowded mask performances (on an arbitrary image):

• Success (Blue): we tagged correctly 24.2% of the non-grape area.
• Failure (Light blue): we tagged incorrectly 0.45% of the grape area.

Angle mask
A grape’s shape is round therefore the distribution of its outline’s gradient angles is
roughly uniform. To detect this we do the following:

• Bucket all gradient angles in a box around every pixel
• Compute a histogram of those angles
• Find relative part of the most frequent angle
• Eliminate pixels outside of tested bounds

Angle mask output

Color masks
We use 2 elimination masks which are based on the colors of pixels.

• Since grapes are green we normalize the green part by the pixel’s brightness
and eliminate pixels outside a certain range.

• Usually grapes are shadowed by leafs, so we bound their brightness.

Green mask output White mask output

White mask performances (on an arbitrary image):

• Success (Blue): we tagged correctly 16.59% of the non-grape area.
• Failure (Light blue): we tagged incorrectly 0.04% of the grape area.

Phases 2, 3, 4 – incremental elimination
Now activate 3 phases to further dilute the un-segmented pixels, each based on the
outcome of the previous phase:

• Segmentation clean-up by multicross mask
• Bagel mask on the gradient of the untagged pixels
• Another clean-up by multicross mask

Bagel mask
Grape’s outline is round and has a uniform gradient size. Also its inside is relatively
empty of edge points.
The following drawing shows a bagel with diameter equal to the measured average
grape diameter.

Let us define 2 areas based on the drawing and construct boolean matrices
accordingly:

• The inside – In the matrix there is 1 on the green area and 0 outside it.
• The bagel – In the matrix there is 1 on the white area and 0 outside it.

For each pixel take the surrounding edges (remaining after the phase 1) according to
the 2 areas shown on the drawing and filter them out based on the following
measures:

• We bound the number of edges inside the bagel (green).
Edge existence map is a boolean matrix with 1 for every point containing an
edge point and 0 otherwise.
Counting edges around a point is done quickly by convolving the edge
existence map with the “inside” matrix.

• We bound the number of most frequent edges on the bagel (white).
Histogram the gradient sizes on the bagel.
Find the most frequent one.
Bound its number of occurrences, if this is outside a tested range, eliminate it.

Bagel mask input Bagel mask output

White mask performances (on an arbitrary image):
• Success (Blue): we tagged correctly 77.63%of the non-grape area.
• Failure (Light blue): we tagged incorrectly 10.88% of the grape area.

Multicross mask
The resulting segmentation of previous phases produced some areas which are
suspected as grape points, yet they are too small to be grapes. Moreover grapes are
usually convex.
For a given point in the grape, points along some direction from it will also be in the
interior of the grape.
To remove those improbable zones we convolve the segmentation map with each of
the kernels below a number of times alternately:

The kernels, where blue is 0 and red is 1.
The “X” kernel is sqrt(2) times smaller than the “+” kernel for normalizing issues.

We define a threshold value which equals to the radius of “+” and “X” and eliminate
points with lower results.

We’ll use this clean-up method before and also after the bagel mask to obtain
continuous and improved results.

Multicross mask input Multicross mask output

White mask performances (on an arbitrary image):

• Success (Blue): we tagged correctly 96.29% of the non-grape area.
• Failure (Light blue): we tagged incorrectly 23.91% of the grape area.

Results

Original image Final result

We applied the algorithm over the whole given labeled directory.

• On average our successful rate according to the dictated symetric difference
evaluation measure is 6.24% (the lower the better)

• Our worst performance over a picture resulted with 22.54%
• Our best performance over a picture resulted with 0.59%
• The standard deviation over the directory 0.047

Conclusion
During the development of the algorithm described in this paper we used many
techniques and methods learned throughout the course in addition to many we
developed ourselves.
Other then the various techniques mentioned before we also tried to use other
methods:

• NCD – learning by normalized compression distance
• Hough transform
• RANSAC
• eliminating by other color combinations
• k-clustering by both colors and x, y coordinates

All these methods resulted with very infirm output.
However we learned that convolution, histograms and k-clustering are powerful tools
when used properly.

References

• K-Means Clustering method – the matlab built-in help
• Hough Transform - http://en.wikipedia.org/wiki/Hough_transform
• RANSAC - http://en.wikipedia.org/wiki/RANSAC
• NCD - http://www.complearn.org/ncd.html

