REAL TIME SKIN MOTION DETECTION

ICBV Course Final Project
2008

By:
Arik Krol

Aviad Pinkovezky
Table of Contents:
2Introduction

3Implementation

4First goal – Motion Detection

6Second goal – Skin color detection

8Third Goal – Combining motion and skin detection

11Problems we encountered

12Future Improvements

13References

Introduction

The current most popular MMI (Man Machine Interface) is the combination of keyboard - mouse usage, but one might think about a better way to control his machine, and the required technology is already at hand.

What if instead of moving and clicking the mouse, or pushing a key on the keyboard, we could combine simple hand movements to perform some simple common tasks (such as browsing back and forward in a website or in a PDF document etc…) .

In Our project we explored the possibility of combining computational vision principles In order to create a simple working demo that simulates browsing using nothing but hand movements.

In our demo we detect human palm movements in front of a standard web camera, determine the movement's direction and print a message accordingly.

The technical part of actually flipping a webpage wasn't implemented since it doesn't have anything to do with computational vision.
The actual code was written in MATLAB and in addition we used a simple web camera with a frame rate of 15 FPS.

Implementation
First goal – Motion Detection
The first goal was to detect any motion of any object within the captured video from the web camera (which was saved as an AVI file).

Our first approach to obtain this goal was to use the 'k-means' clustering algorithm in order to identify the moving object in every frame as a cluster and tracking its center of gravity across the frames.

However, a few problems came to light:

1. Identifying the cluster we want to track in each frame:
In consecutive frames, assuming we have more than one cluster, the cluster we want to track will be in different location. How do we know which cluster moved to which location?

2. Assuming we were able to overcome the above problem (by counting the number of skin colored pixels in each cluster), we found out that the time complexity of this kind of calculation (applying k-means on each and every single frame) is enormous and nowhere near real time performances.

Due to these problems, we sought for a better and more efficient way to detect movement.

Our second approach for detecting motion was to subtract every two consecutive frames (matrices), resulting in a new matrix in which all of the values are zeros except the ones in which the movement occurred.

We were able to take this approach due to the fact that in our scenario the camera is stationary and the background is relatively static.
We converted all the frame images from RGB to Gray Scale in order to simplify the subtraction. Below is an example for subtracting two consecutive RGB frames (which were converted to grayscale) into a grayscale difference image:
[image: image1.jpg]

[image: image2.jpg]

[image: image3.jpg]

As you can see, it's easy to distinguish the moving object (Arik in this case) from the static background.
After the subtraction, we used Gaussian Filter for removing random noise that might appear due to minor differences between the frames (the above picture is after Gaussian Smoothing).
Below is a sequence of three binary images, resulting from three consecutive frames subtractions:

[image: image4.jpg]

[image: image5.jpg]

[image: image6.jpg]

This example demonstrates that we can easily identify and work with the moving object, without interferences from the static background.
Note that in our scenario, we assumed that the camera is stationary, which enabled us to implement motion detection by frames subtraction. Because our motivation is to create an MMI, this assumption is acceptable.
Second goal – Skin color detection
After we managed to identify moving objects, we still faced the problem of distinguishing human palm movement from other moving objects. The approach we took in order to identify palm movement was to distinguish skin pixels from other elements in the image. This makes sense, since we don't expect significant movements other than palm movements, but how do we identify those skin pixels? The easiest way to distinguish human skin from other objects is by the human skin color characteristics, but in order to use those characteristics we need to represent the image in a way that highlights the hue of the image pixels.
The image representation system we found appropriate is H.S.V.
What is H.S.V?
H.S.V Stands for Hue, Saturation and Value. In H.S.V, we represent the color space by points in a cylinder, whose central axis ranges from black at the bottom to white at the top with neutral colors between them, where angle around the axis corresponds to “hue”, distance from the axis corresponds to “saturation”, and distance along the axis corresponds to “lightness”, “value”, or “brightness”. The picture below demonstrates the idea of H.S.V representation:
[image: image7.png]

As we can see, Unlike RGB representation, HSV enables us to easily isolate the hue of image pixels, regardless of illumination and other side effects.
Why is H.S.V good for us?
The human skin is characterized by a reddish hue, which can be easily detected. The following thresholds can be used in order to detect skin pixels:
V ≥ 40
0.2 < S < 0.6
335° < H < 25°

However, in our scenario, we found that using the S threshold caused the loss of many skin pixels, probably due to poor camera quality. We found that using Hue and Value thresholds gave satisfying results.
The following images illustrate the human skin hue values: the left image is an RGB image, while the right one is the Hue layer alone in the HSV version of the same image.
[image: image8.jpg]

[image: image9.jpg]

Although not perfect (due to camera quality and shadings), We can see that human skin areas can be easily identified by this method.
Third Goal – Combining motion and skin detection
After obtaining the abilities to detect both motion and skin colored pixels, we want to combine those abilities in order to detect movements of human body parts (in our scenario – palm). This goal was easy to achieve - all we had to do was to isolate the skin colored pixels subset from the motion detected pixels subset:

{Motion Pixels} ∩ {Skin pixels} = {Skin Motion Pixels}
We did this by iterating over the pixels in the difference image (the one we got by subtracting two consecutive frames) and for each pixel that represented motion, we checked whether it was a skin pixel as well. Below is an example for this process: the topmost image is an RGB image, which is the first frame in a two frames motion sequence, the middle image is the binary differences image (white pixels represent difference between the two frames, hence motion) and the bottommost image is the image obtained by filtering out the non skin pixels.
[image: image10.jpg]

[image: image11.jpg]

[image: image12.jpg]

As we can see in the above images, we managed to isolate the palm movement. Yet, one can claim that the above example is trivial, since the only moving object is the palm… The images below show what happens when we move white paper in front of the camera:

[image: image13.jpg]

[image: image14.jpg]

[image: image15.jpg]

As we can see, employing pure motion detection results in a very clear detection of the moving paper (in the middle picture), but after adding skin detection (bottommost picture) nothing is detected.

So now, all that is left is to determine the direction of the movement and to set appropriate thresholds that will give the best results.
Determining the movement's direction was achieved by calculating the average X axis values of the skin – motion pixels in each frame, and sequentially comparing these values in order to determine the direction of the movement.

Thresholds were determined by a trial and error process, which resulted in the following values:

· Number of consecutive frames to determine that page flipping is required (palm movement in one direction) - 3 frames. (May vary due to frame rate of the camera being used, we used FPS of 15).

· Number of motion skin pixels to determine palm movement in each frame - > 1400 pixels (out of 352X288 = 101376).

Problems we encountered
1. False detections due to Face skin Pixels – Since, naturally, the head is consisted of skin pixels, a significant head movement may be erroneously detected as a palm movement. In addition, in case we move a non skin object (e.g. a piece of paper) across the face, the face will be concealed by this object. When the face will be revealed again, the subtraction will cause the previously hidden face pixels to be considered as movement pixels, and since those face pixels are mainly skin pixels, false detection may occur.
Since we assume that the head is within the topmost 2/3 of the image, our solution to this problem was to seek for movements only on the bottommost 1/3 of the image. This solution solved the mentioned false detections, in addition to some improvement in the run time.
2. False detections due to skin colored like objects – When moving an object, which its hue is similar to the hue of the human skin, we cannot avoid false detection. This problem is demonstrated when moving a brown paper envelope (Military mail envelope…) in front of the camera. A screen shot can be seen below:

[image: image16.jpg]

This problem wasn't solved in our project.
3. Complexity of calculation – Unfortunately, even with the frames subtraction approach, and working on the bottommost 1/3 of the image, we still didn't manage to obtain a "real time like" performance. We didn't solve that problem either.
Other than the problems above, our program managed to identify palm movements, and distinguish them from background movements and other undesired movements.

Future Improvements

1. Improving run time performances to support real time
 motion detection, can be achieved by:

i. Using different programming languages, such as C++ which enables better performances for this kind of tasks.
ii. Using hardware acceleration (parallel computing,
GPGPU, etc.)
2. Setting thresholds dynamically by calibrating the system (for instance - the user moves his hand when the system expect the move and by that can set the thresholds to match the specific scenario and camera specs.)
3. Identifying a larger variety of movements, and adding new
features accordingly (such as special movements for closing
windows, etc.)
References

1. Francesca Gasparini, Raimondo Schettini, Skin segmentation using multiple thresholdings
2. University of Sussex, UK. Web page of David Young, “Static camera and moving objects”:
http://www.cogs.susx.ac.uk/users/davidy/teachvision/vision6.html#heading3
3. And of course, Wikipedia - H.S.V entry.
