SuDoku Puzzle

Via

Relaxation Labeling

[image: image1.png]

Vova Goldman 321465031
SuDoku Puzzle

What is SuDoku?
The Sudoku grid consists of eighty-one squares in a nine by nine grid.
But is not a numerical puzzle, as many people might guess. Sudoku consists of a square grid to be filled in with symbols. The symbols are usually the numbers 1 to 9 and that is why it is often called numerical but they may as well be letters or colors or shapes or whatever - as long as they are distinct things. The puzzle is simply to place numbers in order to complete the grid. There is just one simple rule controlling where you can place numbers in the grid:

Fill in the grid so that
 every row,
 every column, and
 every 3 x 3 box (region)
contains the digits 1 through 9.
Some history of the Sudoku puzzle.

The name Sudoku or more correctly [image: image2.png]ok

 comes from Japan and consists of the Japanese characters Su (meaning 'number') and Doku (meaning 'single') but the puzzle itself originates from Switzerland and then travels to Japan by way of America.

Sudoku has its deep roots in ancient number puzzles. For many centuries people have been interested in working out solutions to puzzles. This has been the basis of much of modern mathematics and science.

The first known form is the Magic square that is first documented in China two thousand years ago.
The great mathematician Leonard Euler is the man chiefly credited with the creation of the puzzle that we now know as Sudoku. Euler turned his mind to all sorts of mathematical problems.

May be only as a hobby, Euler developed the basics of 'Sudoku' which he termed 'Greco-Roman Squares' or Latin Squares - he used letters as the grid square symbols rather than numbers. He mused on what would happen if you removed the rule for magic squares that the sum of the diagonals must add up to the same number as the rows and columns and turn it into a puzzle of permutations. His thoughts on the subject were first published in 1782 in Verhandelingen uitgegeven door het zeeuwsch Genootschap der Wetenschappen te Vlissingen 9, Middelburg pp. 85-239. This dissertation was probably first given as a lecture to the Academy on October 17th 1776
It took two centuries before the puzzle was used by Howard Garnes in an American magazine. As in every good story the puzzle took on an extra twist. Instead of requiring just rows and columns to be permutations a new rule was added so that the grid was split into 3x3 regions of 9 squares and these regions must also have only one occurrence of each symbol. This makes it a more challenging problem for people to solve. Howard Garnes called the puzzle 'Number Place' when it was first published by Dell Puzzle Magazines, New York in 1979.

It didn't take that long for the puzzle to move to Japan. The Japanese added yet another twist to the Sudoku puzzle too. They imposed the rule that the pattern of revealed squares had to be symmetric and not just random. Although the first computer program to generate and solve it was developed to in 1989, the best puzzles are still reckoned to be devised by human skill and judgment.
Sudoku Puzzle Theory:
Sudoku is all about permutations, but permutations with an extra twist of logic.
There exist many solution strategies and techniques for solving sudoku:
using Gödel numbers; Two out of three rule; Sub-group exclusion rule; Hidden Twin exclusion rule; General permutation rule; X-Wing and Swordfish; Backtracking and the Labyrinth and other…
Finding patterns within these permutation subsets is definitely a 'hard' problem.
Pattern matching algorithms belong to the class of the difficult problems to solve: The NP complete class. This is because any analysis has to look through all combinations; it can not just do it in a single linear scan of the permutations.
The time taken to solve does not grow linearly with problem size it grows exponentially.

Relaxation labeling algorithm

Relaxation labeling is a general name for group of methods for assigning labels to set of objects using contextual constraints. It was originally developed for use in the field of computer vision.
Relaxation techniques have been applied to many other areas of computation in general, particularly to the solution of simultaneous nonlinear equations.

The algorithm works with
Set of objects:

[image: image3.wmf]{

}

b

b

n

B

,...,

1

=

.
To each object algorithm should correspond one of the possible labels:

[image: image4.wmf]{

}

m

,...,

2

,

1

=

Ù

.
In the beginning algorithm sets initial probability value
[image: image5.wmf](

)

l

p

i

0

 for each object labeled by each label. This value is the measured confidence that object
[image: image6.wmf]b

i

should be labeled by label
[image: image7.wmf]l

.

[image: image8.wmf](

)

(

)

i

m

i

i

p

p

"

=

³

å

=

1

0

1

0

0

l

l

l

Formulas used by the algorithm:

[image: image9.wmf](

)

Û

,

m

l

r

ij

 The strength of compatibility between the hypotheses "
[image: image10.wmf]b

i

 has

label
[image: image11.wmf]l

" and "
[image: image12.wmf]b

j

has label
[image: image13.wmf]m

"
[image: image14.png]

For each iteration the algorithm calculates the support function for label
[image: image15.wmf]l

 for object
[image: image16.wmf]b

i

 (according to the compatibility of this label with the surrounding):

[image: image17.wmf](

)

(

)

(

)

å

å

=

=

=

n

j

m

j

ij

i

p

r

s

1

1

,

m

m

m

l

l

The original "ad-hoc" update rule – calculates the probability for labeling object
[image: image18.wmf]b

i

with label
[image: image19.wmf]l

 by current probability (from current iteration) and support for this label from the surrounding. [Rosenfild et. al. 1976]:

[image: image20.wmf](

)

(

)

(

)

(

)

(

)

å

=

+

=

m

k

i

k

i

k

i

k

i

k

i

s

p

s

p

p

1

1

m

m

m

l

l

l

Fundamental result for RL theory:

Under certain conditions on
[image: image21.wmf](

)

m

l

,

r

ij

 the relaxation labeling process will converge to a consistent labeling while maximizing the average local consistency.

The Average Local Consistency of the assignment computes:

[image: image22.wmf](

)

(

)

(

)

å

å

=

i

i

i

s

p

p

A

l

l

l

 EMBED Equation.3 [image: image23.wmf]
Generation SuDoku via Relaxation Labeling

Sudoku puzzle solving/generation problem doesn't come from the vision world. But I try to solve this problem via relaxation labeling algorithm.

My first attempt was brute force effort to solve Sudoku via relaxation labeling.
I match parts of Sudoku to RL Algorithm parts in the following way:

Assume that we have sudoku (9 x 9) n= 9
· Set of objects
[image: image24.wmf]{

}

2

1

,...,

n

B

bb

=

 – SuDoku grid cells.
· Possible labels
[image: image25.wmf]{

}

1,2,...,9

Ù=

 – numbers from 1 to 9 that we should correspond to each cell by special rules.
· Initial probability value
[image: image26.wmf](

)

l

p

i

0

(probability of label
[image: image27.wmf]l

to be in i object) – 1/9 to all objects/cells except for first row/column/region so that they (all cells in a row) get constant label in the beginning by random permutation of 1- 9. Thus, we have special constant probability for
[image: image28.wmf](

)

0

0

1

p

l

=

 in conformity to that label assignments.

· Compatibilities function
[image: image29.wmf](

)

,

ij

r

lm

-

 returns 0 or 1 in following conditions:
1 – if objects j and i are NOT in one row/column/region, OR if i , j are both in the same row/column/region and
[image: image30.wmf]lm

¹

;

0 – otherwise.

· The stopping condition of algorithm is that changes in Average Local Consistency are low than 0.001
Results

After long and persistent experiences I saw that this relaxation labeling doesn’t solve SuDoku and gives wrong label assignments to objects.

Also its running time was very, very long and it doesn’t converge to the correct solution.
There were a few successful runs when algorithm solved/generated correct SuDoku.

Therefore I understood that this implementation wasn't fully correct and that I should change my viewpoint…

My second (successful) attempt to solve Sudoku via relaxation labeling.
I match parts of Sudoku to RL Algorithm parts in the following way:

Assume that we have sudoku (9 x 9) n= 9

By one of SuDoku rule, in each region/square should be permutation of all numbers from 1 to 9.
I do n iterations of RL Algorithm runs. In each iteration I “change” set of objects and set of labels. That is, in each iteration a correct “place” assignment is given, for example, to all 1-s
[image: image31.wmf]{

}

19

,...,

11

(or 2-s, 3-s …) in the sudoku grid.
And to first region I give random permutation of (1…9).
So in each iteration k (1 <= k <= 9):
· Set of objects
[image: image32.wmf]{

}

1

,...,

n

B

bb

=

 – Numbers
[image: image33.wmf]1

,...,

n

kk

 (All 1-s or 2-s,…,9-s).
· Possible labels
[image: image34.wmf]{

}

00,01,...,22

Ù=

 – all “possible” (because some places may be borrowed in previous iterations) places in region (square 3x3) that we can set number (
[image: image35.wmf]m

k

) .

· Initial probability value
[image: image36.wmf](

)

l

p

i

0

(probability of label
[image: image37.wmf]l

 to be in i object) – 1/(labels number) to all objects except for the first region that gets constant label in the beginning by random permutation of 1…9
[image: image38.wmf](

)

(

)

0

m

0

0

0

1 if (place in region that k borrowed)

0 if ()

p

p

ll

mml

=-

=¹

.

· Compatibilities function
[image: image39.wmf](

)

,

ij

r

lm

-

 returns 0 or 1 in following conditions:

1 – if labels
[image: image40.wmf] and

lm

 are NOT in one row/column;

0 – otherwise.

· The stopping condition of algorithm is that changes in Average Local Consistency are low than 0.01

Thus, in each iteration position of “some” (1…9) number in each region is defined.

Results:

For 4x4 sudoku grid, simulator generates SuDoku very fast and correct.

For 9x9 sudoku grid, simulator generates correct SuDoku in 55 second – average time. This solution is more than 70% correct (in average), because there exist runs that result in deadlock (incorrect assignments of numbers).
For larger grid (16x16, 25x25) the running time also grows (therefore it's not applicable for SuDoku). The increase in size also increases the number of incorrect assignments. But it's impossible to check that up to the end, because of a very long time of an algorithm run.
SuDoku Puzzle Game Simulator:

· 4x4 and 9x9 SuDoku puzzle grid size

· 3 difficulty levels: easy, normal, hard
· Generate SuDoku button – generate sudoku with defined size
· PLAY button – start SuDoku game
· Show Solution button – solve SuDoku and display solution
[image: image41.png]EB) Sudoku_GUI

Problems:
· Different purposes of two algorithms

The purpose of Relaxation Labeling algorithm is to find some assignments of labels to objects, in such way that the solution will converge to max average local consistency.
The purpose of SuDoku problem is to find consistent arrangement of numbers(objects) in the grid.
This difference causes the relaxation labeling algorithm to stop (when it converges) even if current assignment of numbers to cells doesn't make correct SuDoku solution (“deadlock” problem happens mostly with big size Sudoku).
· Randomization
First step in all “iterations” is randomly generated region, otherwise algorithm doesn’t work (because of equal initial probabilities to all labels). And problem exists with randomization (it’s pseudorandom).
· Running time
Running time for big size SuDoku is very large. I think it’s possible to decrease this time by advanced fast techniques of arrays walking and numbers coding. This is one of the reasons of impossibility to check algorithm (to run it many times) with big size SuDoku…

· “Deadlock”
Deadlock – incorrect (inconsistent) solution/generation. It occurs partially because of the first problem (different purpose) and in my mind also because I run 9 iterations of RL algorithm separately. But in “normal” SuDoku size it works comprehensively well. (in average more than 70%)
Conclusion:

To sum up, this interpretation (variation) of Relaxation Labeling algorithm is good for generating/solving SuDoku puzzle problem.

For small SuDoku puzzle 4x4 it works perfectly! For normal Sudoku puzzle 9x9 it also works good (more than 70%). But running time is not the best.

In my opinion, adding some backtracking mechanism may improve results of this algorithm.

There exist many other better and faster techniques for generation/solving SuDoku problem that can solve even bigger and different kinds of SuDoku.
Reference

· On the Foundations of Relaxation Labeling Processes, by Hummel and Zucker 1983
· Relaxation Labeling Algorithms – A Review, by Kittler and Illingworth, 1985

· Perceptual Organization (III), CS 202-1-5251, BGU, Ohad Ben-Shahar
· Relaxation Labeling techniques - Computer Science, Cardiff University
· SuDoku Puzzle Theory.
· SuDoku Puzzle site.
· Sudoku Science.
_1201923629.unknown

_1233304850.unknown

_1233306568.unknown

_1233310005.unknown

_1233310642.unknown

_1233477538.unknown

_1233477588.unknown

_1233310273.unknown

_1233309820.unknown

_1233309942.unknown

_1233309276.unknown

_1233305249.unknown

_1233305973.unknown

_1233305021.unknown

_1201968142.unknown

_1201970063.unknown

_1201970181.unknown

_1201969927.unknown

_1201924075.unknown

_1201967900.unknown

_1201924057.unknown

_1201923934.unknown

_1201924002.unknown

_1201923450.unknown

_1201923594.unknown

_1201923191.unknown

_1201923346.unknown

_1201922896.unknown

